
1.1

1.2

1.3

1.4

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

Table	of	Contents
Introduction

Video	Tutorials

Curriculum	Map

Curriculum	Assets

Unit	1:	Programming	&	Java	(2	weeks)
Lesson	1.01:	Using	Eclipse	&	Practice	It

Lesson	1.02:	Algorithms	&	Computational	Thinking

Lesson	1.03:	String	&	Console	Output

Lesson	1.04:	Common	Errors	&	Comments

Lesson	1.05:	Static	Methods	&	Method	Calls	(1/2)

Lesson	1.06:	Static	Methods	&	Method	Calls	(2/2)

Lesson	1.07:	Programming	Project

Lesson	1.08:	Finding	&	Fixing	Errors

Lesson	1.09:	Review

Lesson	1.99:	(Unit	1	Test)

Unit	2:	Working	with	Data	&	Basic	Control
Flow	(3	weeks)
Lesson	2.00:	Test	Review	&	Reteach

Lesson	2.01:	Basic	Data	Concepts

Lesson	2.02:	Declaring	&	Assigning	Variables

Lesson	2.03:	String	Concatenation	&	Increment	Decrement	Operators

Lesson	2.04:	Mixing	Types	&	Casting

Lesson	2.05:	for	Loops

Lesson	2.06:	nested	for	Loops

Lesson	2.07:	Scope	&	Pseudocode

Lesson	2.08:	Programming	Project

1

3.10

3.11

3.12

3.13

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.20.1

4.21

Lesson	2.09:	Programming	Project

Lesson	2.10:	Finding	&	Fixing	Errors

Lesson	2.11:	Review

Lesson	2.99:	(Unit	2	Test)

Unit	3:	Advanced	Data	&	Control	Flow	(4
weeks)
Lesson	3.00:	Test	Review	&	Reteach

Lesson	3.01:	Parameters

Lesson	3.02:	Limitations	of	Parameters	&	Multiple	Parameters

Lesson	3.03:	Return	Values

Lesson	3.04:	Programming	Project

Lesson	3.05:	Using	Objects	&	String	Processing

Lesson	3.06:	Interactive	Programs	&	Scanner	Objects

Lesson	3.07:	Pokémon	Battle	Programming	Project

Lesson	3.08:	Finding	&	Fixing	Errors

Lesson	3.09:	Relational	Operators	&	if/else

Lesson	3.10:	Nested	if/else	Statements

Lesson	3.11:	Reducing	Redundancy

Lesson	3.12:	Cumulative	Algorithms

Lesson	3.13:	while	Loops

Lesson	3.14:	Random	Numbers

Lesson	3.15:	Fencepost	&	Sentinel	Loops

Lesson	3.16:	Boolean	Logic	(2	Days)

Lesson	3.17:	Finding	&	Fixing	Errors

Lesson	3.18:	Review

Lesson	3.99:	(Unit	3	test)

Test	2	Guide

Lesson	3.XX:	Frac	Calc

Unit	4:	Arrays,	Lists,	&	Files	(4	weeks)

2

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

7.1

7.2

7.3

7.4

Lesson	4.00:	Test	Review	&	Reteach

Lesson	4.01:	Array	Basics

Lesson	4.02:	For-Each	Loop	&	Arrays	Class

Lesson	4.03:	Printing,	Searching,	&	Testing	for	Equality	(2	Days)

Lesson	4.04:	Reference	Semantics

Lesson	4.05:	Shifting	Values	&	Arrays	of	Objects

Lesson	4.06:	Nested	Loop	Algorithms	&	Rectangular	Arrays

Lesson	4.07:	ArrayList

Lesson	4.08:	Finding	&	Fixing	Errors

Lesson	4.09:	Magpie	Lab	(5	Days)

Lesson	4.10:	Review

Lesson	4.99:	(Unit	4	test)

Unit	5:	Object-Oriented	Programming	(4
weeks)
Lesson	5.00:	Test	Review	&	Reteach

Lesson	5.01:	Object	Oriented	Programming

Lesson	5.02:	Object	State	&	Behavior

Lesson	5.03:	Object	Initialization:	Constructors

Lesson	5.04:	Encapsulation

Lesson	5.05:	Finding	&	Fixing	Errors

Lesson	5.06:	Picture	Lab	(9	Days)

Lesson	5.07:	Review

Lesson	5.99:	(Unit	5	test)

Unit	6:	Inheritance	&	Polymorphism	(4
weeks)
Lesson	6.00:	Test	Review	&	Reteach

Lesson	6.01:	Inheritance	Basics	(2	Days)

Lesson	6.02:	Overriding	Methods	&	Accessing	Inherited	Code

Lesson	6.03:	Interacting	with	the	Object	Superclass

3

7.5

7.6

7.7

7.8

7.9

7.10

7.11

7.11.1

7.12

8.1

8.2

8.3

8.4

8.5

8.6

8.6.1

9.1

9.2

9.3

9.4

9.5

9.6

9.7

9.8

9.9

Lesson	6.04:	Polymorphism

Lesson	6.05:	Has-a	Relationships

Lesson	6.06:	Interfaces

Lesson	6.07:	Programming	Project	(5	Days)

Lesson	6.08:	Finding	&	Fixing	Errors

Lesson	6.09:	Review

Lesson	6.99:	(Unit	6	test)

Test	5	Guide

Lesson	6.XX:	Text	Excel

Unit	7:	Searching	&	Sorting	(3	weeks)
Lesson	7.00:	Test	Review	&	Reteach

Lesson	7.01:	Searching	Algorithms

Lesson	7.02:	Sorting	Algorithms

Lesson	7.03:	Elevens	Lab	(16	Days)

Lesson	7.04:	Review

Lesson	7.99:	(Unit	7	test)

Test	6	Guide

Unit	8:	Recursion	(2	weeks)
Lesson	8.00:	Test	Review	&	Reteach

Lesson	8.01:	Thinking	Recursively

Lesson	8.02:	Writing	Recursive	Solutions

Lesson	8.03:	Mechanics	of	Recursion

Lesson	8.04:	MergeSort

Lesson	8.05:	Finding	&	Fixing	Errors

Lesson	8.06:	Review

Lesson	8.07:	(Unit	8	quiz)

Lesson	8.08:	Quiz	Review	&	Reteach

Unit	9:	AP	Test	Review	(3	weeks)

4

10.1

11.1

11.2

12.1

12.2

12.3

12.4

Lesson	9.00:	Reviewing	for	the	AP	Exam

Unit	10:	Post-AP	Exam	Projects	(4–5	weeks)
SpaceBattleArena

TEALS	Minecraft	Modding

Appendix
About	This	Curriculum

Changelog

Contributing

Acknowledegments

5

http://mikeware.github.io/SpaceBattleArena/
https://tealsk12.github.io/teals-minecraft/

About	the	AP	Computer	Science	A
Curriculum
The	TEALS	Program	has	designed	these	curriculum	materials	for	the	use	of	teachers	and
volunteer	tech	professionals	in	high	school	classrooms.	Any	teacher	with	prior	programming
experience	(or	access	to	a	computer	science	professional)	can	use	this	curriculum	to	teach
the	AP	Computer	Science	A	course.

This	curriculum	is	based	on	and	aligned	with	Professor	Stuart	Reges'	course	at	the
University	of	Washington,	CSE	142.	The	course	uses	the	textbook	Building	Java	Programs:
A	Back	to	Basics	Approach,	by	Stuart	Reges	and	Marty	Stepp.	The	course	is	aligned	with
the	AP	Computer	Science	A	standards.	TEALS	has	received	AP	Audit	certification	for
previous	versions	of	the	course	and	syllabus.	Since	these	materials	are	new	in	2015–2016,
TEALS	will	apply	to	have	the	new	syllabus	approved.	Once	the	CollegeBoard	approves	the
new	syllabus,	partner	schools	may	use	the	“claim	identical”	function	of	the	AP	Audit	website
to	obviate	the	need	for	their	own	curriculum	audit.

This	curriculum	uses	principles	of	universal	design	for	learning	(UDL).	The	curriculum	was
written	for	and	tested	in	classrooms	with	diverse	learners;	students	with	individualized
education	plans,	English	language	learners,	students	who	have	received	sub-optimal	math
or	language	instruction	in	the	past,	students	who	are	gifted/talented,	students	who	are
otherwise	“outside	the	average.”	See	Additional	Resources	for	more	information	on	universal
design	for	learning.

Accessing	the	Curriculum
The	AP	Computer	Science	A	Curriculum	GitBook	is	located	at
https://www.gitbook.com/book/tealsk12/ap-computer-science-a/details.

For	contributions	to	the	curriculum,	the	AP	Computer	Science	A	GitHub	repository	is	located
at	https://github.com/TEALSK12/apcsa.

Using	the	curriculum
Each	classroom	has	different	physical,	cultural,	academic,	and	scheduling	needs.	Therefore,
we	have	tried	to	create	a	collection	of	lessons	and	materials	that	are	adaptable	to	most
situations.	TEALS	volunteers	and	classroom	teachers	will	find	different	aspects	of	the

Introduction

6

https://www.tealsk12.org/
https://www.gitbook.com/book/tealsk12/ap-computer-science-a/details
https://github.com/TEALSK12/apcsa

curriculum	useful;	you	should	expect	to	skip	over	certain	notes	to	focus	on	the	information
that	is	most	useful	to	you.

We	have	provided	classroom	management	tips	and	engagement	tips	for	TEALS	volunteers,
who	are	new	to	the	classroom	setting.	Experienced	teachers	and	volunteers	will	likely
choose	to	skip	such	details	and	focus	on	the	step-by-step	lecture	notes.

You	may	browse	the	Curriculum	Map	for	an	overview	of	the	pacing,	objectives,	and
assessments.

Year	Round	Pacing

The	table-of-contents	(included	with	Introduction	materials)	contains	course-grained	time
estimates	on	the	scale	of	weeks	and	days	so	teachers	can	plan	accordingly.	Units	6	and	8
include	extra	days	in	the	time-estimate	so	teachers	can	re-adjust	their	unit	plans	if	they	have
shifted	due	to	unexpected	class	cancellations	or	drift.

Daily	Structure

Every	classroom	is	different,	and	we	expect	that	instructors	will	adapt	the	daily	structure	of
the	class	to	suit	their	students'	needs.	That	said,	we've	designed	most	of	the	lessons	using
the	following	daily	structure:

Hook	&	Instruction

Each	lesson	plan	begins	with	one	or	several	options	for	short	(from	seconds	to	5
minutes)	engaging	or	mystifying	activities	that	introduce	students	to	the	topics	to	be
introduced	later	in	the	lesson.

Lecture	notes,	student	prompts,	and	quick-assessments	(with	answers)	are	outlined	in
subsection	“Introduction.”	If	you	are	teaching	in	a	flipped	classroom,	this	section	can	be
pre-recorded	for	students	to	view	at	home.	For	additional	resources	on	flipping	your
classroom,	please	refer	to	“Additional	Resources”	below.

Student	Practice

Student	practice/activities	are	outlined	with	step-by-step	instructions	including	pacing
suggestions	and	alternative	stopping	points.	Any	special	materials	or	preparation
needed	for	the	hook,	lecture,	or	activity	are	listed	in	the	Materials	&	Prep	section.

Warmup	/	DoNow	/	Boardwork/Ticket-to-leave

Introduction

7

Since	each	classroom	progresses	at	different	rates,	we	have	not	included	warm-up	and
cool-down	questions	(though	time	has	been	scheduled	in	the	Pacing	Guide	for	one	or
both	of	these	activities).	You	should	choose	your	questions	based	on	the	topics	you	felt
were	most	challenging	or	confusing	for	your	students.	A	good	source	for	short-answer
and	multiple	choice	questions	is	the	Barron's	AP	Computer	Science	A	review	book,
which	TEALS	ships	to	each	AP	CS	A	volunteer.

Scaffolding

The	Glossary	of	Education	Reform	defines	scaffolding	as:

A	variety	of	instructional	techniques	used	to	move	students	progressively	toward	stronger
understanding	and,	ultimately,	greater	independence	in	the	learning	process.

Instructors	provide	successive	levels	of	temporary	support	that	help	students	reach	higher
levels	of	comprehension	than	they	would	have	been	able	to	achieve	without	assistance.
Support	is	gradually	removed	as	students	move	towards	mastery,	which	occurs	when
students	demonstrate	skills	and	knowledge	without	any	outside	assistance.

The	University	of	Washington	course	CSE	142	and	associated	textbook	do	not	contain	much
scaffolding.	This	curriculum	attempts	to	wrap	the	content	of	the	UW	course	with	scaffolding
appropriate	for	high	school	classes.	Some	classes	may	not	require	scaffolding,	and	other
classes	may	need	even	more	scaffolding	than	those	steps	suggested	within	the	lesson	plan.

Examples

Most	lecture	notes	and	classroom	examples	are	slightly	modified	versions	of	the	examples
outlined	in	the	textbook.	When	the	class	needs	additional	examples,	or	re-teaching,
instructors	can	refer	directly	to	the	textbook	for	a	fresh	set	of	similar	examples	and
explanations.	The	"additional	resources"	section	of	this	document	lists	some	other	sources
for	examples	and	labs.

References	to	the	textbook

Some	classrooms	are	using	earlier	editions	of	the	Building	Java	Programs	textbook.	To
avoid	confusion,	we	have	written	all	reading	and	practice	assignments	by	chapter	and
section	rather	than	page	number.	In	cases	where	practice	problems	or	assignments	differ
between	editions,	we	have	copied	those	assignments	(with	reference)	into	printable
documents.

Homework	Assignments

Introduction

8

https://www.amazon.com/dp/1438009194

As	written,	the	homework	assignments	contain	material	to	be	assigned,	but	are	not	phrased
in	terms	of	learning	goals.	Teachers	should	choose	specific	learning	goals	for	the	evening's
work	depending	on	student	progress	and	timing	within	the	week	and	school	year,	then
phrase	the	assignment	in	terms	of	learning	goals,	not	output.

For	example,	rather	than	"read	section	3.1"	assign	the	reading	by	saying	"for	tomorrow,	be
prepared	to	pass	data	into	methods	using	parameters.	Section	3.1	in	the	textbook	will	show
you	how."

Pokémon

Throughout	the	course,	this	curriculum	includes	lab	assignments	using	the	Pokémon
universe	as	a	subject-matter	domain	(often	replacing	textbook	assignments	on	less	salient
topics	like	compound	interest).	The	Pokémon	storyline	and	game	rules	are	familiar	to	male
and	female	students	from	all	socioeconomic	backgrounds,	available	across	the	digital	divide
as	both	a	card	game	and	a	video	game,	and	are	available	in	10	different	languages	(English,
Spanish,	Portuguese,	Dutch,	French,	German,	Italian,	Korean,	Chinese,	and	Japanese).

Because	the	game	relies	on	statistics,	modulo	operators,	and	the	underlying	32-bit	integer
that	characterizes	any	given	Pokémon,	we	will	be	using	this	theme	to	introduce	students	to
much	of	the	AP	CS	A	curriculum.	Students	will	be	entering	the	AP	CS	A	course	with	varying
degrees	of	math	literacy,	and	framing	mathematical	challenges	in	this	familiar	framework	is
helpful	for	avoiding	stereotype	threat	and	math	anxiety.

To	learn	more	about	the	Pokémon	storyline,	game	rules,	underlying	formulae,	and
characters,	visit	http://bulbapedia.bulbagarden.net/.	For	a	more	general	introduction	to	the
Pokémon	franchise,	visit	http://www.pokemon.com/.

AP	Test	Preparation

The	curriculum	is	designed	with	AP	Test	Prep	in	mind.	All	of	the	Unit	tests	are	in	the	AP
exam	format.	In	classes	where	many	students	will	take	the	exam,	instructors	should
gradually	adjust	the	testing	environment	to	mimic	that	of	the	exam:

Always	provide/allow	the	AP	Java	Quick	Reference

Move	from	open-note	(see	“Tricky	Code	Cheat	Sheet”)	to	closed-note

The	AP	exam	has	40	multiple	choice	questions	in	75	minutes	(≈2	minutes	per	question).
On	the	earlier	tests,	start	at	a	slower	pace	(perhaps	4	minutes	per	question).	As	the
course	progresses,	work	to	a	pace	even	faster	than	the	actual	test	(90	seconds	per
question).

Introduction

9

http://bulbapedia.bulbagarden.net/
http://www.pokemon.com/
http://apcentral.collegeboard.com/apc/public/repository/ap_comp_sci_a_quick_reference.pdf

Vocabulary

A	comprehensive	vocabulary	list	for	each	unit	is	provided	for	teachers	to	generate	word
walls	in	their	classroom.	Some	classrooms	will	be	able	to	omit	certain	vocabulary	words;	as
offered,	the	lists	offered	include	words	that	English	language	learners	and	students	with
previous	sub-optimal	instruction	may	find	challenging.

Error-Checking	Lessons

One	class	period	in	each	unit	has	been	devoted	to	student	correction	and	resubmission	of
work.	While	it	may	be	tempting	to	“win	back”	class	time	by	skipping	these	sessions,	we
strongly	encourage	teachers	to	leave	these	sessions	in.

When	students	have	the	opportunity	to	fix	their	work	and	earn	back	full	or	partial	credit,	it
gives	students	agency	over	their	grade	and	teaches	students	to	examine	and	reflect	upon
their	own	learning.	On	a	practical	note,	when	error-checking	lessons	are	included,	teachers
need	only	grade	answers	as	correct/incorrect,	since	students	will	be	challenged	with	finding
and	fixing	the	errors	on	their	own	later.	Finally,	students	that	have	answered	all	or	most	of
their	work	correctly	receive	a	day	off	to	do	silent	work/play	on	their	own,	which	positively
reinforces	students	to	put	in	the	initial	effort	to	win	a	day	off.

Video	Tutorials
Timing	and	Pacing	—	Adjusting	lessons	and	the	curriculum	map	for	the	speed	of	your
learners
Projects	and	Labs	—	Choosingn	whether	your	class	completes	the	AP	labs	or	the
projects	(FracCalc/TextExcel)
Supporting	Visual-Spatial	Learners	—	Using	the	physical	space	in	your	classroom	to
enhance	learning
Parson's	Problems	—	Assessing	high-level	programming	skills	quickly	with	Parson's
Problems
Grudgeball	—	Reviewing	material	by	playing	a	class	game	of	Grudgeball

Digital	Tools	Associated	with	This	Curriculum

Integrated	Design	Environment	(IDE)	—	Eclipse

Coding	in	Java	requires	the	Java	Development	Kit	and	a	text	editor	or	IDE.	There	are	many
Java	IDEs	available.	Currently	most	of	the	TEALS	classrooms	use	Eclipse.	Unit	1	includes
directions	for	installing	Eclipse.

Introduction

10

https://www.youtube.com/watch?v=LkGh03UZ724
https://www.youtube.com/watch?v=WHvuK7LBe-o
https://www.youtube.com/watch?v=O6yBe3J10vQ
https://www.youtube.com/watch?v=11n-AsaCd9w
https://www.youtube.com/watch?v=u_GzWwSrDlo

Practice-It!

Professors	Marty	Stepp	and	Jessica	Miller	created	the	Practice-It	online	tool	that	allows
students	to	complete	Java	exercises	from	the	BJP	textbook	and	get	immediate	feedback	on
their	results.	Detailed	instructions	for	teacher	and	student	registration	on	the	site	are
included	in	Unit	1	lessons.

As	of	the	2015–2016	school	year,	TEALS	classes	do	not	have	access	to	the	Practice-It
dashboard	for	tracking	student	progress	on	the	exercises.	Instead,	instructors	can	use	one
of	the	following	methods:

1.	 Students	take	screen	shots	of	their	total	correct	problems	(a	table	is	available	on	their
home	dashboard),	and	submit	the	screenshots	by	email	or	form	submission	on	your
chosen	learning	management	system.

2.	 Implement	the	Practice-It	Grade	Retrieval	Tool	created	by	Mauricio	Del	Carpio	(of
Bishop	Blanchet	High	School).	Step-by-step	instructions	for	installation	are	included	in
the	Practice	It	Grade	Retrieval	document	included	with	the	other	Introduction	materials.

Detecting	Cheating	with	MOSS

Although	the	curriculum	does	not	specifically	outline	an	approach	for	monitoring	cheating,
many	teachers	have	found	it	easier,	faster,	and	less	stressful	to	use	a	free	plagiarism-
detection	program	offered	by	Stanford	at	http://theory.stanford.edu/~aiken/moss/.	Teachers
will	still	need	to	manually	inspect	code	flagged	by	MOSS,	but	the	program	does	catch
common	tactics	including	renaming	variables	and	reordering	methods.

Occasionally,	teachers	have	difficulty	registering	for	an	account.	If	this	occurs,	you	are
encouraged	to	email	the	program's	creator	Alex	Aiken	directly,	at	aiken@cs.stanford.edu.

Additional	Resources

The	free	web-based	game	Code	Hunt	(http://www.codehunt.com)	offers	opportunities
for	students	to	find	and	fix	errors	by	“discovering	the	missing	code	segments.”
Assignments/Levels	are	automatically	graded,	and	students	can	compete	against	each
other	to	hone	their	programming	skills.

Similar	to	PracticeIt,	CodingBat	(http://www.codingbat.com)	offers	Java	practice
problems	with	instant	feedback	for	students.	The	problems	in	CodingBat	are	distinct
from	those	in	the	Building	Java	Programs	textbook.	CodingBat	has	a	teacher

Introduction

11

https://practiceit.cs.washington.edu/
http://theory.stanford.edu/~aiken/moss/
mailto:aiken@cs.stanford.edu
http://www.codehunt.com
http://www.codingbat.com

dashboard,	and	a	system	of	badges	to	motivate	learners.	Instructors	can	also	upload
their	own	sets	of	java	problems	for	their	classes	to	complete.

If	you	are	interested	in	learning	more	about	principles	of	universal	design	for	learning,
please	visit	http://www.udlcenter.org/aboutudl/udlguidelines.

Emerging	EdTech	has	collected	a	sample	of	20	digital	tools	to	increase	collaboration	in
the	classroom.	One	of	them	might	be	perfect	for	your	classroom:

See	20	Fun	Free	Tools	for	Interactive	Classroom	Collaboration.	Other	tools	for
collaboration	that	have	been	successfully	used	in	TEALS	classrooms	include	Twiddla,
Vyew,	Skype,	and	Google	Hangouts.

If	your	classroom	does	not	already	have	a	digital	grade	management	system,	previous
TEALS	teaching	teams	have	used	Moodle,	Canvas,	Schoology,	Excel	Online,	and
Google	Forms.

To	create	digital,	self-grading,	and	responsive	quizzes,	Google	Forms	and	Socrative
offer	free	tools	and	tutorials	to	use	their	systems.

If	you	are	stationed	in	a	high-performing	school,	or	in	a	school	where	many	students
have	already	mastered	other	programming	languages,	you	may	want	to	consider
flipping	(or	inverting)	your	classroom.	To	learn	more	about	the	theory	and	practice	of
teaching	in	a	flipped	classroom,	Vanterbilt	Univerisity	offers	a	comprehensive
introduction	and	links	to	practical	resources/examples	here:
http://cft.vanderbilt.edu/guides-sub-pages/flipping-the-classroom.

You	should	still	be	able	to	use	most	of	the	resources	offered	in	this	curriculum,	but	you
will	have	to	shuffle	how	you	use	the	lesson	plans.	Some	quick	recommendations:

1.	 Use	the	lecture	notes	as	given,	but	record	the	lecture	for	student	viewing.

2.	 Where	lecture	activities	have	been	suggested	(e.g.	think-pair-shares),	consider
embedding	questions	into	your	lesson	plans.

3.	 Save	class	competitions	for	in-class,	and	leave	reading	and	easy	Practice-it,	self
check,	and	worksheet	exercises	for	home	review.

As	you	read	through	the	lesson	plans,	you	will	find	several	classroom	teaching	activities
and	strategies	appear	repeatedly.	Brief	video	tutorials	modeling	these	activities	can	be
found	within	the	TEALS	repository.	Keep	an	eye	out	for	specific	adjustments	to	the
lesson	plans	for	error-checking	and	test	review.	While	these	lesson	plans	look	identical
at	first	glance,	small	adjustments	have	been	made	for	content,	timing,	and	AP	test	prep.

Giving	feedback	on	the	curriculum

Introduction

12

http://www.udlcenter.org/aboutudl/udlguidelines
http://tinyurl.com/k62tstg
http://www.twiddla.com
http://www.vyew.com
http://www.skype.com
http://hangouts.google.com
http://cft.vanderbilt.edu/guides-sub-pages/flipping-the-classroom

TEALS	intends	for	this	curriculum	to	be	a	starting	point;	it's	our	first	attempt	at	a	complete
AP	CS	A	curriculum.	We'll	continue	evolving	and	adapting	the	curriculum	and	associated
materials	as	we	learn	more	about	teaching	AP	CS	A.	To	participate	in	this	process,	we	invite
TEALS	team	members	and	independent	teachers	using	this	curriculum	to	submit	edits	and
suggestions	via	the	discussion	forum	on	the	TEALS	dashboard,	or	to
APSquad@tealsk12.org.

Introduction

13

mailto:APSquad@tealsk12.org

AP	CS	A	Video	Tutorials
The	following	are	a	set	of	video	tutorials	to	help	guide	new	teachers	on	the	TEALS
curriculum.

Videos
Timing	and	Pacing:	Adjust	lessons	and	the	curriculum	map	for	the	speed	of	your
learners
Projects	and	Labs:	Choose	whether	your	class	completes	the	AP	Labs	or	the
Projects(FracCalc/TextExcel)
Space:	Using	the	physical	space	in	your	classroom	to	enhance	learning
Parson's	Problems:	Assessing	high-level	programming	skills	quickly	with	Parson's
Problems
Grudgeball:	Review	materials	using	by	plaing	a	game	of	Grudgeball

Video	Tutorials

14

https://www.youtube.com/watch?v=LkGh03UZ724
https://www.youtube.com/watch?v=WHvuK7LBe-o
https://www.youtube.com/watch?v=O6yBe3J10vQ
https://www.youtube.com/watch?v=11n-AsaCd9w
https://www.youtube.com/watch?v=u_GzWwSrDlo

AP	CS	A	Curriculum	Map
The	following	curriculum	map	is	a	day-by-day	listing	of	the	AP	Computer	Science	course	in
chronological	order.	Each	row	represents	one	day	of	class,	based	on	a	medium-paced	class.
Readings	from	the	textbook	and	homework	assignments	are	included	on	the	day	when	they
should	be	assigned.	Refer	to	the	Introduction	document	for	information	about	how	to	adjust
this	pacing	for	your	specific	classroom.

Contents
Unit	1:	Programming	&	Java	(2	weeks)
Unit	2:	Working	with	Data	&	Basic	Control	Flow	(3	weeks)
Unit	3:	Advanced	Data	&	Control	Flow	(4	weeks)
Unit	4:	Arrays,	Lists,	&	Files	(4	weeks)
Unit	5:	Object-Oriented	Programming	(4	weeks)
Unit	6:	Inheritance	&	Polymorphism	(4	weeks)
Unit	7:	Searching	&	Sorting	(3	weeks)
Unit	8:	Recursion	(2	weeks)
Unit	9:	AP	Test	Review	(3	weeks)
Unit	10:	Post-AP	Exam	Projects	(4–5	weeks)

Abbreviations

WS	—	Worksheet
SC	—	Self-Check	problem	(in	the	textbook)
EX	—	Exercise	(in	the	textbook)
PP	—	Programming	Project	(in	the	textbook)

Unit	1:	Programming	&	Java	(2	weeks)
Unit	1	Slides
Unit	1	Word	Bank

Curriculum	Map

15

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit1/Unit1.pptx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit1/Unit%201%20Word%20Bank.docx

Curriculum	Assets

LP Title In	Class Reading Homework

1.01 Using	Eclipse	&
Practice-It

WS	1.1.1
WS	1.1.2

Explore	Pokémon
(pokemon.com,
console,	web	site)

1.02
Algorithms	&
Computational
Thinking

PB&J 1.2

Reflect	on	PB&J
assignment
Continue	exploring
Pokémon

1.03 String	&	Console
Output

Practice-It
SC	1.6–9,
1.11–14
LP	Welcome

1.3 EX	1.1–5

1.04 Common	Errors	&
Comments WS	1.4 1.4 EX	1.6–9

1.05 Static	Methods	&
Method	Calls

Practice-It
SC	1.22,	1.23,
1.26,	1.29

1.5 EX	1.11,	1.12,	1.14,
1.16

1.06 Static	Methods	&
Method	Calls

LP	StarFigures
LP
PikachuChatter

Outline	ch	1
PP	1.1,	1.3

1.07 Programming
Project PP	1.2,	1.5 Note	check	(add

summaries	if	needed)

1.08 Finding	&	Fixing
Errors Fix	homework Review

ch	1
Submit	questions	for
review

1.09 Review

Review
questions
WS	1.9
Practice	test

Study

[1.99] Unit	1	Test
Test	0	Section	I
Test	0	Section
II

1.01

Curriculum	Map

16

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit1/WS%201.1.1.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit1/WS%201.1.2.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit1/WS%201.4.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit1/WS%201.9.docx

Lesson	1.01 Using	Eclipse	&	Practice-It

Objectives Students	will	be	able	to	open	Eclipse,	create	and	save	a	file	in
Eclipse,	and	use	Practice-It.

Assessments
Students	will	demonstrate	Plug-In	and	Un-Plug	procedures	for	the
teacher.
Students	will	log	in	and	submit	a	sample	problem	in	Practice-It.

In	Class WS	1.1.1
WS	1.1.2

Reading

Homework Explore	Pokémon	(pokemon.com,	console,	web	site)

1.02

Lesson	1.02 Algorithms	&	Computational	Thinking

Objectives
Students	will	be	able	to	define	algorithms,	programs,	hardware,
software,	and	operating	systems.
Students	will	be	able	to	describe	the	relationships	between	these
concepts	and	components.

Assessments
Students	will	write	sample	algorithms,	assemble	and	debug	a
program	that	directs	the	instructor	to	make	a	peanut	butter	&	jelly
sandwich.

In	Class PB&J

Reading 1.2

Homework Reflect	on	PB&J	assignment
Continue	exploring	Pokémon

1.03

Lesson	1.03 String	&	Console	Output

Objectives
Students	will	correctly	assemble	a	complete	program	that	uses	a
class	header,	body,	and	main	method.
Students	will	correctly	use	print,	println,	and	escape	sequences.

Assessments Students	will	create	a	starter	Pokémon	program
Students	will	complete	several	Practice-It	questions.

In	Class
Practice-It
SC	1.6–9,	1.11–14
LP	Welcome

Reading 1.3

Homework EX	1.1–5

Curriculum	Map

17

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit1/WS%201.1.1.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit1/WS%201.1.2.docx

1.04

Lesson	1.04 Common	Errors	&	Comments

Objectives
Students	will	create	simple	programs	with	comments
Students	will	be	able	to	list	and	apply	the	steps	necessary	for	avoiding
syntax	errors.

Assessments Students	will	complete	a	worksheet	(WS	1.4).
Students	will	develop	a	personal	check-list	for	spotting	syntax	errors.

In	Class WS	1.4

Reading 1.4

Homework EX	1.6–9

1.05

Lesson	1.05 Static	Methods	&	Method	Calls

Objectives
Students	will	use	procedural	decomposition	to	plan	complex	programs
using	structure	diagrams.
Students	will	manage	complexity	by	using	method	calls.

Assessments Students	will	complete	Practice-It	problems.

In	Class Practice-It
SC	1.22,	1.23,	1.26,	1.29

Reading 1.5

Homework EX	1.11,	1.12,	1.14,	1.16

1.06

Lesson	1.06 Static	Methods	&	Method	Calls

Objectives Students	will	use	structure	diagrams	to	plan	complex	programs.
Students	will	manage	complexity	by	using	method	calls.

Assessments Students	will	complete	Practice-It	problems,	students	will	write	a
structured	Pikachu	program.

In	Class LP	StarFigures
LP	PikachuChatter

Reading

Homework Outline	ch	1
PP	1.1,	1.3

1.07

Curriculum	Map

18

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit1/WS%201.4.docx

Lesson	1.07 Programming	Project

Objectives Students	will	construct	a	program	containing	method	calls	and	static
methods.

Assessments Students	will	submit	a	complete,	functional	program	by	the	end	of
class.

In	Class PP	1.2,	1.5

Reading

Homework Note	check	(add	summaries	if	needed)

1.08

Lesson	1.08 Finding	&	Fixing	Errors

Objectives Students	will	find	errors	in	their	returned	homework	assignments,	and
correct	their	code.

Assessments Students	will	re-submit	all	homework	assignments	with	corrected
answers.

In	Class Fix	homework

Reading Review	ch	1

Homework Submit	questions	for	review

1.09

Lesson	1.09 Review

Objectives Students	will	identify	weaknesses	in	their	Unit	1	knowledge.

Assessments Students	will	create	a	personalized	list	of	review	topics	to	guide
tonight’s	study	session.

In	Class
Review	questions
WS	1.9
Practice	test

Reading

Homework Study

1.99

Unit	1	Test Programming	&	Java

In	Class Test	0	Section	I
Test	0	Section	II

Curriculum	Map

19

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit1/WS%201.9.docx

Unit	2:	Working	with	Data	&	Basic	Control	Flow
(3	weeks)

Unit	2	Slides
Unit	2	Word	Bank
Curriculum	Assets

LP Title In	Class Reading Homework

2.00 Test	Review	&
Reteach Review	test

2.1	except	for
“Mixing	types	and
Casting”

Test	corrections

2.01 Basic	Data
Concepts WS	2.1 2.2	up	to	“String

Concatenation”

SC	2.1-2.3
(4th:	2.1",2.3,"
2.4)

2.02
Declaring	&
Assigning
Variables

WS	2.2
Practice-It	SC
2.7,	2.11
(4th:	2.8,"
2.13)	E	2.1

Rest	of	2.2

SC	2.5",2.6,2.9,
2.12-2.15
(4th:
2.6,2.7,2.1,2.14-
2.17)

2.03

String
Concatenation
&	Increment
Decrement
Operators

Grudgeball Rest	of	2.2 SC	2.4
(4th:	2.5)

2.04 Mixing	Types	&
Casting

WS	2.4
Poster	2.4

2.3	up	to	“Nested
for	Loops" finish	WS	2.4

2.05 for	Loops

WS	2.5
Practice-It	SC
2.18,2.23,
2.24
(4th:
2.21,2.26,"
2.27)

2.3	“Nested	for
Loops”

SC	2.19-2.21
(4th:	2.22-2.24)

2.06 nested	for
Loops

Practice-It	SC
2.28-2.30
(4th:	2.31-
2.33),	E	2.5

2.4	“Scope”	and
“Pseudocode"

SC	2.26",	2.27
(4th:	2.29,
2.30),E	2.4

Curriculum	Map

20

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit2/Unit2.pptx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit2/Unit%202%20Word%20Bank.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit2/WS%202.1.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit2/WS%202.2.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit2/WS%202.4.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit2/Poster%202.4.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit2/WS%202.4.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit2/WS%202.5.docx

2.07 Scope	&
Pseudocode

WS	2.7
Discuss	PP
2.1

Read	2.4	“Class
Constants”

SC	2.31-2.33
(4th	2.34-2.36)

2.08 Programming
Project Start	PP	2.4 Outline	ch	2

(omit	2.5)

2.09 Programming
Project

Complete	PP
2.4

[TBD	practice
question]

2.10 Finding	&	Fixing
Errors Fix	HW Review	ch	2	(omit

2.5)

Submit
questions	for
review

2.11 Review	(Review
questions)

WS	2.11
practice	test Study

[2.99] (Unit	2	Test)

Test	1	Section
I
Test	1	Section
II

2.00

Lesson	2.00 Test	Review	&	Reteach

Objectives Students	will	re-learn	or	strengthen	content	knowledge	and	skills	from
Unit	1.

Assessments Students	will	re-submit	test	answers	with	updated	corrections	for
partial	or	full	credit,	depending	on	instructor	preference.

In	Class Review	test

Reading 2.1	except	for	“Mixing	Types	and	Casting”

Homework Test	corrections

2.01

Curriculum	Map

21

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit2/WS%202.7.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit2/WS%202.11.docx

Lesson	2.01 Basic	Data	Concepts

Objectives
Students	will	be	able	to	identify	and	categorize	data	types.
Students	will	identify	operators	and	operands,	and	will	correctly	apply
rules	or	precedence.

Assessments
Using	operator/operand	expression	sets,	students	will	use	rules	of
precedence	to	correctly	write	code	that	yields	a	given	answer.
Using	operator/operand	expression	sets,	students	will	create	their
own	expressions	and	predict	the	output.

In	Class WS	2.1

Reading 2.2	up	to	“String	Concatenation”

Homework SC	2.1–3	(4th:	2.1,	2.3,	2.4)

2.02

Lesson	2.02 Declaring	&	Assigning	Variables

Objectives Students	will	be	able	to	identify,	declare,	and	assign	variables.

Assessments Students	will	write	a	program	that	converts	temperature	from
Farenheit	to	Celsius.

In	Class
WS	2.2
Practice-It
SC	2.7,	2.11	(4th:	2.8,	2.13)
E	2.1

Reading Rest	of	2.2

Homework SC	2.5,	2.6,	2.9,	2.12–15	(4th:	2.6,	2.7,	2.10,	2.14–17)

2.03

Lesson	2.03 String	Concatenation	&	Increment	Decrement	Operators

Objectives Students	will	apply	the	rules	of	string	concatenation,	students	will
correctly	interpret	incrementing	and	decrementing	statements.

Assessments Students	will	evaluate	statements	and	predict	output	during	a	game	of
grudgeball.

In	Class Grudgeball

Reading Rest	of	2.2

Homework SC	2.4	(4th:	2.5)

2.04

Curriculum	Map

22

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit2/WS%202.1.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit2/WS%202.2.docx

Lesson	2.04 Mixing	Types	&	Casting

Objectives
Students	will	be	able	to	describe	which	types	automatically	convert
into	others	when	appearing	together	in	expressions,	and	predict	how
an	expression	with	mixed	types	will	evaluate.
Students	will	be	able	to	convert	types	by	casting.

Assessments
Students	will	use	“Zombie	Rules”	of	precedence	to	correctly	write
code	that	yields	a	given	answer
Sudents	will	create	their	own	expressions	&	predict	output	by
completing	and	trading	worksheets.

In	Class WS	2.4
Poster	2.4

Reading 2.3	up	to	“Nested	for	Loops”

Homework Finish	WS	2.4

2.05

Lesson	2.05 for	Loops

Objectives Students	will	trace	loops	to	predict	program	behavior
Students	will	construct	loops	to	execute	simple	tasks.

Assessments Students	will	trace	and	construct	loops	in	Practice-It	problems.

In	Class
WS	2.5
Practice-It
SC	2.18,	2.23,	2.24	(4th:	2.21,	2.26,	2.27)

Reading 2.3	“Nested	for	Loops”

Homework SC	2.19–21	(4th:	2.22–24)

2.06

Lesson	2.06 Nested	for	Loops

Objectives Students	will	trace	nested	loops	to	predict	program	behavior
Students	will	construct	loops	to	execute	simple	tasks.

Assessments Students	will	trace	and	construct	nested	loops	in	Practice-It	problems.

In	Class
Practice-It
SC	2.28–30	(4th:	2.31–33)
E	2.5

Reading 2.4	“Scope”	and	“Pseudocode”

Homework SC	2.26,	2.27	(4th:	2.29,	2.30)
E	2.4

Curriculum	Map

23

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit2/WS%202.4.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit2/Poster%202.4.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit2/WS%202.4.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit2/WS%202.5.docx

2.07

Lesson	2.07 Scope	&	Pseudocode

Objectives Students	will	be	able	to	identify	the	scope	of	a	variable	and	identify
common	scope	errors.

Assessments Students	will	complete	a	worksheet.

In	Class WS	2.7
Discuss	PP	2.1

Reading Read	2.4	“Class	Constants”

Homework SC	2.31–33	(4th	2.34–36)

2.08

Lesson	2.08 Programming	Project

Objectives Students	will	plan	and	construct	a	structured	program	containing
nested	loops.

Assessments Students	will	submit	a	complete,	functional	program	by	the	end	of
next	class.

In	Class Start	PP	2.4

Reading

Homework Outline	ch	2	(omit	2.5)

2.09

Lesson	2.09 Programming	Project

Objectives Students	will	plan	and	construct	a	structured	program	containing
nested	loops.

Assessments Students	will	submit	a	complete,	functional	program	by	the	end	of
next	class.

In	Class Complete	PP	2.4

Reading

Homework [TBD	practice	question]

2.10

Curriculum	Map

24

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit2/WS%202.7.docx

Lesson	2.10 Finding	&	Fixing	Errors

Objectives Students	will	find	errors	in	their	returned	homework	assignments,	and
correct	their	code.

Assessments Students	will	re-submit	all	homework	assignments	with	corrected
answers.

In	Class Fix	homework

Reading Review	ch	2	(omit	2.5)

Homework Submit	questions	for	review

2.11

Lesson	2.11 Review

Objectives Students	will	identify	weaknesses	in	their	Unit	1	knowledge.

Assessments Students	will	create	a	personalized	list	of	review	topics	to	guide
tonight’s	study	session.

In	Class
Review	questions
WS	2.11
Practice	test

Reading

Homework Study

2.99

Unit	2	Test Working	with	Data	&	Basic	Control	Flow

In	Class Test	1	Section	I
Test	1	Section	II

Unit	3:	Advanced	Data	&	Control	Flow	(4
weeks)

Unit	3	Slides
Unit	3	Word	Bank

Curriculum	Map

25

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit2/WS%202.11.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit3/Unit3.pptx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit3/Unit%203%20Word%20Bank.docx

Curriculum	Assets
Frac	Calc

LP Title In	Class Reading Homework

3.00 Test	Review
&	Reteach

Algorithm	for
Solving	Problems

3.1	up	to	“Limitations
of	Parameters”

Test
corrections

3.01 Parameters Practice-It	SC	3.1	-
3.3

"3.1	“Limitations	of
Parameters”,
“Multiple
Parameters”,
""Parameters	versus
Constants"""

SC	3.4-3.7

3.02

Limitations	of
Parameters
&	Multiple
Parameters

(Art	project)

"3.1	“Overloading
Methods”,	3.2
""Methods	That
Return	Values"""

Jazz	up	art
project	and
program

3.03 Return
Values

Practice-It	SC	3.14
-	3.16

SC	3.17,	E
3.1

3.04 Programming
Project

WS	3.4
Equestria

3.3	up	to	“Interactive
Programs	and
Scanner	Objects”

SC	3.18,
3.19

3.05

Using
Objects	&
String
Processing

WS	3.5

3.3	“Interactive
programming”	and
“Sample	interactive
program”

SC	3.19-
3.21

3.06

Interactive
Programs	&
Scanner
Objects

Practice-It	SC	3.24
-	3.26;	E	3.12,
3.14,	3.15

Outline	ch
3	(omit	3.4)

3.07

Pokémon
Battle
Programming
Project

WS	3.7
LP	Battle

Summarize
notes	since
last	exam

3.08 Finding	&
Fixing	Errors

Fix	HW
webmaker.org

4.1	up	to	“nested	if
else	statements” SC	4.1-4.4

3.09
Relational
Operators	&
if/else

Operator
Precedence
Grudgeball

4.1	“Nested	if/else”
and	“Flow	of	control”

SC	4.7-4.9;
E	4.1-4.2

3.10
Nested
if/else
Statements

WS	3.10	Teach
mini-lessons
Practice-It	SC	4.5,
4.6,	E	4.3

4.1,	“Factoring	if/else
statements”	and
“Testing	multiple
conditions”

E	4.4,	4.5

3.11
Reducing
Redundancy

(Refactoring	com
petition) Read	4.2

Outline	ch
4	(omit	4.4,

Curriculum	Map

26

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit3/Algorithm%20for%20Solving%20Problems.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit3/WS%203.4.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit3/Map%20of%20Equestria.pptx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit3/WS%203.5.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit3/WS%203.7.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit3/Operator%20Precedence.pptx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit3/WS%203.10.docx

Redundancy petition) 4.5)

3.12 Cumulative
Algorithms

Tally	code	on
board,Collaborative
Programming
Exercise	WS	3.12

5.1	skip	“do/while
loops” PP	4.2

3.13 while	Loops
Practice-It	SC	5.1	-
5.4,	E	5.2
WS	3.13

5.1	”Random
numbers” E	5.2

3.14 Random
Numbers

Practice-It	SC	5.5-
5.7;	E	5.4,	5.5 5.2 PP	5.1

3.15
Fencepost	&
Sentinel
Loops

WS	3.15	Teach
mini-lessons 5.3 E	5.6,	5.8

3.1601 Boolean
Logic

Practice-It	SC	5.27,
5.29
WS	3.16	(RPS,
Pig)
DeMorgan’s	Law
Poster	3.16.1
Poster	3.16.2

Outline	ch
5	(through
5.3)

3.1602 Boolean
Logic	(Day	2)

3.17 Finding	&
Fixing	Errors (Fix	HW) Review	ch	3-5

Submit
questions
for	review

3.18 Review
(Review
questions),	WS
3.18	practice	test

Study

3.99 Unit	3	test
Test	2	Guide
Test	2	Section	I
Test	2	Section	II

3.XX Frac	Calc

3.00

Curriculum	Map

27

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit3/WS%203.12.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit3/WS%203.13.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit3/WS%203.15.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit3/WS%203.16.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit3/DeMorgan%27s%20Law.pptx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit3/Poster%203.16.1.pdf
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit3/Poster%203.16.2.pdf
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit3/WS%203.18.docx

Lesson	3.00 Test	Review	&	Reteach

Objectives Students	will	re-learn	or	strengthen	content	knowledge	and	skills	from
Unit	2.

Assessments Students	will	re-submit	test	answers	with	updated	corrections	for
partial	or	full	credit,	depending	on	instructor	preference.

In	Class Algorithm	for	Solving	Problems

Reading 3.1	up	to	“Limitations	of	Parameters”

Homework Test	corrections

3.01

Lesson	3.01 Parameters

Objectives
Students	will	correctly	construct	formal	and	actual	parameters
(arguments).
Students	will	predict	the	output	of	programs	that	use	parameters.

Assessments
Students	will	teach	a	mini-lesson	explaining	the	relationship	between
parameters	and	values	stored	in	memory.
Students	will	submit	Practice-It	questions.

In	Class Practice-It
SC	3.1–3

Reading 3.1	“Limitations	of	Parameters”,	“Multiple	Parameters”,	“Parameters
versus	Constants”

Homework SC	3.4–7

3.02

Lesson	3.02 Limitations	of	Parameters	&	Multiple	Parameters

Objectives Students	will	modify	programs	using	parameters	and	class	constants
to	create	original	artworks.

Assessments Students	will	complete	an	art	project	and	“artist	statement”	justifying
their	programming	choices.

In	Class Art	project

Reading 3.1	“Overloading	Methods”
3.2	“Methods	That	Return	Values”

Homework Jazz	up	art	project	and	program

3.03

Curriculum	Map

28

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit3/Algorithm%20for%20Solving%20Problems.docx

Lesson	3.03 Return	Values

Objectives Students	will	write	a	program	that	returns	values.

Assessments Students	will	complete	Practice-It	questions	and	write	a	program	to
meet	a	Pokémon	Challenge.

In	Class Practice-It
SC	3.14–16

Reading

Homework SC	3.17
E	3.1

3.04

Lesson	3.04 Programming	Project

Objectives Students	will	write	a	program	that	uses	parameters,	the	math	class,
and	returns	values.

Assessments Students	will	submit	an	Equestria	program	by	the	end	of	class.

In	Class WS	3.4
Equestria

Reading 3.3	up	to	“Interactive	Programs	and	Scanner	Objects”

Homework SC	3.18–19

3.05

Lesson	3.05 Using	Objects	&	String	Processing

Objectives
Students	will	be	able	to	differentiate	between	primitive	and	object
types.
Students	will	apply	0-indexing	and	string	processing	techniques	to
predict	the	output	of	a	program.

Assessments Students	will	complete	WS	3.5

In	Class WS	3.5

Reading 3.3	“Interactive	Programming”	and	“Sample	Interactive	Program”

Homework SC	3.19–21

3.06

Curriculum	Map

29

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit3/WS%203.4.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit3/Map%20of%20Equestria.pptx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit3/WS%203.5.docx

Lesson	3.06 Interactive	Programs	&	Scanner	Objects

Objectives Students	will	write	programs	that	accept	user	input	using	a	scanner
object.

Assessments Students	will	complete	Practice-It	problems.

In	Class
Practice-It
SC	3.24–26
E	3.12,14,15

Reading

Homework Outline	ch	3	(omit	3.4)

3.07

Lesson	3.07 Pokémon	Battle	Programming	Project

Objectives Students	will	write	a	program	that	requests	user	input	and	returns
data.

Assessments Students	will	write	a	program	that	calculates	damage	done	to
Pokémon	in	a	battle.

In	Class WS	3.7
LP	Battle

Reading

Homework Summarize	notes	since	last	exam

3.08

Lesson	3.08 Finding	&	Fixing	Errors

Objectives Students	will	find	errors	and	correct	their	previously	submitted
homework	and	classwork	assignment.

Assessments Students	will	re-submit	all	homework	assignments	with	corrected
answers.

In	Class Fix	homework
webmaker.org

Reading 4.1	up	to	“Nested	If/Else	Statements”

Homework SC	4.1–4

3.09

Curriculum	Map

30

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit3/WS%203.7.docx

Lesson	3.09 Relational	Operators	&	if/else

Objectives Students	will	be	able	to	evaluate	relational	expressions,	predict	and
trace	the	flow	of	an	if	statement.

Assessments Students	will	evaluate	relational	expressions	and	practice	correct	if
statement	syntax	during	a	game	of	grudgeball.

In	Class Operator	Precedence
Grudgeball

Reading 4.1	“Nested	If/Else”	and	“Flow	of	Control”

Homework SC	4.7–9
E	4.1–2

3.10

Lesson	3.10 Nested	if/else	Statements

Objectives
Students	will	will	be	able	to	choose	which	if	statements	ot	use	for
different	problems
Students	will	use	correct	syntax	for	the	different	if	statements.

Assessments
Students	will	teach	a	mini-lesson	on	sequential	or	nested	if
statements.
Students	will	submit	several	Practice-It	questions.

In	Class
WS	3.10	Teach	mini-lessons
Practice-It
SC	4.5–6
E	4.3

Reading 4.1,	“Factoring	If/Else	Statements”	and	“Testing	Multiple	Conditions”

Homework EX	4.4–5

3.11

Lesson	3.11 Reducing	Redundancy

Objectives Students	will	simplify	code	and	reduce	redundancy	by	factoring	if/else
statements	and	testing	multiple	conditions	simultaneously.

Assessments Students	will	complete	a	class	competition.

In	Class Refactoring	competition

Reading 4.2

Homework Outline	ch	4	(omit	4.4,	4.5)

3.12

Curriculum	Map

31

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit3/Operator%20Precedence.pptx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit3/WS%203.10.docx

Lesson	3.12 Cumulative	Algorithms

Objectives Students	will	find	and	correct	syntax	errors	in	conditional	cumulative
algorithms.

Assessments Students	will	write,	modify,	and	correct	programs	written	by	others.

In	Class Tally	code	on	board
Collaborative	Programming	Exercise	WS	3.12

Reading 5.1	(skip	“Do/While	Loops”)

Homework PP	4.2

3.13

Lesson	3.13 while	Loops

Objectives
Students	will	trace	while	loops	to	predict	(1)	the	number	of	times	the
body	executes	and	(2)	the	output	of	the	code.
Students	will	be	able	to	differentiate	between	while	loops,	if
statements,	and	for	loops.

Assessments Students	will	complete	Practice-It	questions.

In	Class
Practice-It
SC	5.1–4
E	5.2
WS	3.13

Reading 5.1	“Random	Numbers”

Homework EX	5.2

3.14

Lesson	3.14 Random	Numbers

Objectives Students	will	be	able	to	write	expressions	that	generate	a	random
integer	between	any	two	values.

Assessments Students	will	complete	Practice-It	questions.

In	Class
Practice-It
SC	5.5–7
E	5.4–5

Reading 5.2

Homework PP	5.1

3.15

Curriculum	Map

32

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit3/WS%203.12.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit3/WS%203.13.docx

Lesson	3.15 Fencepost	&	Sentinel	Loops

Objectives
Students	will	be	able	to	describe	when	to	use	fencepost	and	sentinel
loops.
Students	will	use	proper	syntax	to	construct	these	control	structures.

Assessments Students	will	teach	a	mini-lesson	explaining	the	relationship	between
parameters	and	values	stored	in	memory.

In	Class WS	3.15	Teach	mini-lessons

Reading 5.3

Homework EX	5.6,8

3.16.1

Lesson	3.16 Boolean	Logic	(Day	1)

Objectives Students	will	work	in	pairs	to	write	a	game	that	plays	Rock	Paper
Scissors.

Assessments Students	will	submit	a	program	at	the	end	of	2	or	3	class	periods.

In	Class

Practice-It
SC	5.27,	5.29
WS	3.16	(RPS,	Pig)
DeMorgan’s	Law
Poster	3.16.1
Poster	3.16.2

Reading

Homework Outline	ch	5	(through	5.3)

3.16.2

Lesson	3.16 Boolean	Logic	(Day	2)

3.17

Curriculum	Map

33

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit3/WS%203.15.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit3/WS%203.16.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit3/DeMorgan%27s%20Law.pptx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit3/Poster%203.16.1.pdf
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit3/Poster%203.16.2.pdf

Lesson	3.17 Finding	&	Fixing	Errors

Objectives Students	will	find	errors	in	their	returned	homework	assignments,	and
correct	their	code.

Assessments Students	will	re-submit	all	homework	assignments	with	corrected
answers.

In	Class Fix	homework

Reading Review	ch	3–5

Homework Submit	questions	for	review

3.18

Lesson	3.18 Review

Objectives Students	will	identify	weaknesses	in	their	Unit	3	knowledge.

Assessments Students	will	create	a	personalized	list	of	review	topics	to	guide
tonight’s	study	session.

In	Class Review	questions
WS	3.18	Practice	Test

Reading

Homework Study

3.99

Unit	3	Test Advanced	Data	&	Control	Flow

Guide Test	2	Guide

In	Class Test	2	Section	I
Test	2	Section	II

3.XX

Unit	3	Project Frac	Calc

In	Class Frac	Calc

Curriculum	Map

34

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit3/WS%203.18.docx

Unit	4:	Arrays,	Lists,	&	Files	(4	weeks)
Unit	4	Slides
Unit	4	Word	Bank
Curriculum	Assets
Magpie	Chatbot	Lab

LP Title In	Class Reading Homework

4.00 Test	Review	&
Reteach Review	test 7.1	up	to	Arrays	and

Methods
Test
corrections

4.01 Array	Basics WS	4.1
Poster	4.2

7.1	For-Each	Loop
and	The	Arrays	Class

SC	7.1,	7.7,
7.9

4.02 For-Each	Loop	&
Arrays	Class WS	4.2 7.2	up	to	Reversing

an	Array SC	7.12-7.14

4.03

Printing,
Searching,	&
Testing	for
Equality

WS	4.3	Mini-
lessons

SC	7.14-7.17,
E	7.3

4.03

Printing,
Searching,	&
Testing	for
Equality	(Day	2)

7.3 SC	7.19-7.21

4.04 Reference
Semantics

WS	4.4
7.4	up	to
Command-
Line
Arguments

E	7.9,	7.10

4.05 Shifting	Values	&
Arrays	of	Objects

SC	7.22,
7.23,	7.25,
7.26,	7.30;	E
7.16

7.4	Nested	Arrays,
7.5	Rectangular	Two
Dimensional	Arrays

SC	7.27-7.29,
E	7.14

4.06

Nested	Loop
Algorithms	&
Rectangular
Arrays

WS	4.6
10.1	up	to	Adding	to
and	Removing	from
an	ArrayList

SC	[TBD]

4.07 ArrayList Grudgeball
Poster	4.7

Outline	ch	7
and	10.1

4.08 Finding	&	Fixing
Errors Fix	HW Review	ch	7,	10.1	for

Magpie	lab

Submit
questions	for
review

4.09
01

Magpie	Chatbot
Lab	(day	1)

Magpie
Chatbot	Lab
Activity	1	&	2

Barrons	ch	6

Curriculum	Map

35

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit4/Unit4.pptx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit4/Unit%204%20Word%20Bank.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit4/WS%204.1.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit4/Poster%204.2.pptx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit4/WS%204.2.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit4/WS%204.3.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit4/WS%204.4.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit4/WS%204.6.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit4/Poster%204.7.pptx

4.09
02

Magpie	Chatbot
Lab	(day	2)

Magpie
Chatbot	Lab
Activity	2

Barrons	ch	6

4.09
03

Magpie	Chatbot
Lab	(day	3)

Magpie
Chatbot	Lab
Activity	3

Barrons	ch	6
practice
questions

4.09
04

Magpie	Chatbot
Lab	(day	4)

Magpie
Chatbot	Lab
Activity	4

Check	and
correct
Barrons	ch.6
questions

4.09
05

Magpie	Chatbot
Lab	(day	5)

Magpie
Chatbot	Lab
Activity	5

Check	and
correct
Barrons	ch.6
questions

4.10 Review

Review
questions
WS	4.10
practice	test

Study

4.99 Unit	4	test

Test	3
Section	I
Test	3
Section	II

4.00

Lesson	4.00 Test	Review	&	Reteach

Objectives Students	will	re-learn	or	strengthen	content	knowledge	and	skills	from
Unit	3.

Assessments Students	will	re-submit	test	answers	with	updated	corrections	for
partial	or	full	credit,	depending	on	instructor	preference.

In	Class Review	test

Reading 7.1	up	to	“Arrays	and	Methods”

Homework Test	corrections

4.01

Curriculum	Map

36

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit4/WS%204.10.docx

Lesson	4.01 Array	Basics

Objectives Students	will	define,	populate,	and	access	arrays.

Assessments Students	will	complete	manipulatives	exercises	on	WS	4.1.1

In	Class WS	4.1
Poster	4.2

Reading 7.1	“For-Each	Loop”	and	“The	Arrays	Class”

Homework SC	7.1,7,9

4.02

Lesson	4.02 For-Each	Loop	&	Arrays	Class

Objectives Students	will	define,	populate,	and	access	arrays.

Assessments Students	will	complete	manipulatives	exercises	on	WS	4.2

In	Class WS	4.2

Reading 7.2	up	to	“Reversing	an	Array”

Homework SC	7.12–14

4.03.1

Lesson	4.03 Printing,	Searching,	&	Testing	for	Equality	(Day	1)

Objectives Students	will	be	able	to	manipulate	single-dimension	arrays	using	a
variety	of	array	transversal	algorithms.

Assessments
Students	will	teach	a	mini-lesson	on	printing,	searching/replacing,
testing	for	equality,	reversing	an	array,	or	string	traversal.
Students	will	complete	a	quiz	at	the	end	of	Day	2.

In	Class WS	4.3	Teach	mini-lessons

Reading

Homework SC	7.14–17
E	7.3

4.03.2

Curriculum	Map

37

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit4/WS%204.1.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit4/Poster%204.2.pptx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit4/WS%204.2.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit4/WS%204.3.docx

Lesson	4.03 Printing,	Searching,	&	Testing	for	Equality	(Day	2)

Objectives

Assessments

In	Class

Reading 7.3

Homework SC	7.19–21

4.04

Lesson	4.04 Reference	Semantics

Objectives Students	will	be	able	to	compare	and	contrast	how	primitives	and
arrays	are	treated	when	passed	as	parameters.

Assessments Students	will	complete	graphic	organizers	and	a	worksheet.
Some	students	will	complete	a	Pokémon	Challenge	for	extra	credit.

In	Class WS	4.4

Reading 7.4	up	to	“Command-Line	Arguments”

Homework EX	7.9–10

4.05

Lesson	4.05 Shifting	Values	&	Arrays	of	Objects

Objectives Students	will	be	able	to	shift	elements	within	an	array	and	construct
arrays	of	objects.

Assessments Students	will	complete	Practice-It	questions	and	model	memory
manipulation	using	array	whiteboards.

In	Class SC	7.22,23,25,26,30
E	7.16

Reading 7.4	“Nested	Arrays”
7.5	“Rectangular	Two	Dimensional	Arrays”

Homework SC	7.27–29
E	7.14

4.06

Curriculum	Map

38

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit4/WS%204.4.docx

Lesson	4.06 Nested	Loop	Algorithms	&	Rectangular	Arrays

Objectives Students	will	correctly	adjust	nested	loop	headers	for	use	with	arrays
Students	will	correctly	construct	two-dimensional	arrays

Assessments Students	will	complete	WS	4.6

In	Class WS	4.6

Reading 10.1	up	to	“Adding	to	and	Removing	from	an	ArrayList”

Homework SC	[TBD]

4.07

Lesson	4.07 ArrayList

Objectives
Students	will	construct	code	using	ArrayList
Students	will	predict	the	output	of	methods	that	take	arrays	as
parameters	and/or	return	arrays.

Assessments Students	will	evaluate	statements	and	predict	output	during	a	game	of
Grudgeball.

In	Class Grudgeball
Poster	4.7

Reading

Homework Outline	ch	7	and	10.1

4.08

Lesson	4.08 Finding	&	Fixing	Errors

Objectives Students	will	find	errors	in	their	returned	homework	assignments,	and
correct	their	code.

Assessments Students	will	re-submit	all	homework	assignments	with	corrected
answers.

In	Class Fix	homework

Reading Review	ch	7,	10.1	for	Magpie	lab

Homework Submit	questions	for	review

4.09.1

Curriculum	Map

39

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit4/WS%204.6.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit4/Poster%204.7.pptx

Lesson	4.09 Magpie	Lab	(Day	1)

Objectives Students	will	complete	a	long-form	lab,	using	if	statements,
algorithms,	the	Sting	class,	arrays,	and	ArrayLists.

Assessments
Students	will	complete	the	College	Board’s	AP	CS	A	Magpie	Chatbot
Lab.
Students	will	answer	assessment	questions	on	the	fourth	class	exam.

In	Class [Lab:	Magpie	Chatbot	Lab]
Magpie	Chatbot	Lab	Activity	1	&	2

Reading Barrons	ch	6

Homework

4.09.2

Lesson	4.09 Magpie	Lab	(Day	2)

Objectives

Assessments

In	Class Magpie	Chatbot	Lab	Activity	2

Reading Barrons	ch	6

Homework

4.09.3

Lesson	4.09 Magpie	Lab	(Day	3)

Objectives

Assessments

In	Class Magpie	Chatbot	Lab	Activity	3

Reading

Homework Barrons	ch	6	practice	questions

4.09.4

Curriculum	Map

40

Lesson	4.09 Magpie	Lab	(Day	4)

Objectives

Assessments

In	Class Magpie	Chatbot	Lab	Activity	4

Reading

Homework Check	and	correct	Barrons	ch.6	questions

4.09.5

Lesson	4.09 Magpie	Lab	(Day	5)

Objectives

Assessments

In	Class Magpie	Chatbot	Lab	Activity	5

Reading

Homework Check	and	correct	Barrons	ch.6	questions

4.10

Lesson	4.10 Review

Objectives Students	will	identify	weaknesses	in	their	Unit	4	knowledge.

Assessments Students	will	create	a	personalized	list	of	review	topics	to	guide
tonight’s	study	session.

In	Class
Review	questions
WS	4.10
Practice	test

Reading

Homework Study

4.99

Unit	4	Test Arrays,	Lists	&	Files

In	Class Test	3	Section	I
Test	3	Section	II

Curriculum	Map

41

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit4/WS%204.10.docx

Unit	5:	Object-Oriented	Programming	(4	weeks)
Unit	5	Slides
Unit	5	Word	Bank
Curriculum	Assets
Picture	Lab

LP Title In	Class Reading Homework

5.00 Test	Review
&	Reteach Review	test 8.1 Test

corrections

5.01
Object
Oriented
Programming

Practice-It	SC
8.1-8.5
WS	5.1.1

8.2	up	to	“Mutators
and	Accessors.”

5.02 Object	State
&	Behavior WS	5.2 8.3	up	to	“The

Keyword	this.”
SC	8.9-8.11,
8.13-8.16

5.03
Object
Initialization:
Constructors

WS	5.3.1
WS	5.3.2 8.4

5.04 Encapsulation WS	5.4	Mini-
lessons SC	8.22-8.28

5.05 Finding	&
Fixing	Errors Fix	HW Review	ch	8	for

Picture	Lab

Submit
questions	for
review

5.06
01

Picture	Lab
(day	1)

Picture	Lab
Activity	1	&	2
Picture	Lab

Summarize
notes	since
last	exam

5.06
02

Picture	Lab
(day	2)

Picture	Lab
Activity	3	&	4,
notebook	checks

Outline	ch	8

5.06
03

Picture	Lab
(day	3)

Picture	Lab
Activity	5,
notebook	checks

Read	and	highlight
Barrons	ch	2,	skip
this	keyword

5.06
04

Picture	Lab
(day	4)

Picture	Lab
Activity	5	&	6,
notebook	checks

Barrons	ch	2
exam,	skip
#20

Picture	Lab

Curriculum	Map

42

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit5/Unit5.pptx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit5/Unit%205%20Word%20Bank.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit5/WS%205.1.1.pdf
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit5/WS%205.2.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit5/WS%205.3.1.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit5/WS%205.3.2.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit5/WS%205.4.docx

5.06
05

Picture	Lab
(day	5)

Activity	6,
Barron's	checks

Read	and	highlight
Barrons	ch	5

5.06
06

Picture	Lab
(day	6)

Picture	Lab
Activity	7 SC	8.28,	8.30

5.06
07

Picture	Lab
(day	7)

Picture	Lab
Activity	8 8.5 Finish	Picture

Lab	Activity	8

5.06
08

Picture	Lab
(day	8)

Picture	Lab
Activity	9

Cont.	Picture
Lab	Activity	9

5.06
09

Picture	Lab
(day	9)

Picture	Lab
Activity	9,	cont.

Submit
questions	for
review

5.07 Review
Review	question
WS	5.7	Test
practice

Study

[5.99] (Unit	5	test) Test	4	Section	I
Test	4	Section	II

5.00

Lesson	5.00 Test	Review	&	Reteach

Objectives Students	will	re-learn	or	strengthen	content	knowledge	and	skills	from
Unit	4.

Assessments Students	will	re-submit	test	answers	with	updated	corrections	for
partial	or	full	credit,	depending	on	instructor	preference.

In	Class Review	test

Reading 8.1

Homework Test	corrections

5.01

Curriculum	Map

43

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit5/WS%205.7.docx

Lesson	5.01 Object	Oriented	Programming

Objectives
Students	will	be	able	to	describe	the	relationship	between	classes,
objects,	and	client	code.
Students	will	be	able	to	predict	the	output	of	the	code	that	uses
objects.

Assessments Students	will	complete	Practice-It	questions.

In	Class
Practice-It
SC	8.1–5
WS	5.1.1

Reading 8.2	up	to	“Mutators	and	Accessors”

Homework

5.02

Lesson	5.02 Object	State	&	Behavior

Objectives
Students	will	be	able	to	describe	classes,	objects,	and	client	code.
Students	will	be	able	to	predict	the	output	of	the	code	that	uses
objects.

Assessments Students	will	complete	WS	5.2	individually	or	in	pairs.

In	Class WS	5.2

Reading 8.3	up	to	“The	Keyword	this”

Homework SC	8.9–11,13–16

5.03

Lesson	5.03 Object	Initialization:	Constructors

Objectives
Students	will	be	able	to	describe	and	create	classes,	objects,	and
client	code.
Students	will	be	able	to	predict	the	output	of	the	code	that	uses
objects.

Assessments Students	will	complete	Practice-It	questions.

In	Class WS	5.3.1
WS	5.3.2

Reading 8.4

Homework

5.04

Curriculum	Map

44

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit5/WS%205.1.1.pdf
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit5/WS%205.2.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit5/WS%205.3.1.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit5/WS%205.3.2.docx

Lesson	5.04 Encapsulation

Objectives Students	will	be	able	to	manipulate	single-dimension	arrays	using	a
variety	of	array	transversal	algorithms.

Assessments
Students	will	teach	a	mini-lesson	on	printing,	searching/replacing,
testing	for	equality,	reversing	an	array,	or	string	traversal.
Students	will	complete	a	quiz	at	the	end	of	Day	2.

In	Class WS	5.4	Teach	mini-lessons

Reading

Homework SC	8.22–28

5.05

Lesson	5.05 Finding	&	Fixing	Errors

Objectives Students	will	find	errors	in	their	returned	homework	assignments,	and
correct	their	code.

Assessments Students	will	re-submit	all	homework	assignments	with	corrected
answers.

In	Class Fix	homework

Reading Review	ch	8	for	Picture	Lab

Homework Submit	questions	for	review

5.06.1

Lesson	5.06 Picture	Lab	(Day	1)

Objectives
Students	will	complete	a	long-form	lab,	using	two	dimensional	arrays
of	objects,	array	traversing	algorithms,	program	analysis,	binary
numbers,	inheritance,	and	interfaces.

Assessments Picture	Lab

In	Class Picture	Lab	Activity	1	&	2
Picture	Lab

Reading

Homework Summarize	notes	since	last	exam

5.06.2

Curriculum	Map

45

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit5/WS%205.4.docx

Lesson	5.06 Picture	Lab	(Day	2)

Objectives

Assessments

In	Class Picture	Lab	Activity	3	&	4
Notebook	checks

Reading

Homework Outline	ch	8

5.06.3

Lesson	5.06 Picture	Lab	(Day	3)

Objectives

Assessments

In	Class Picture	Lab	Activity	5
Notebook	checks

Reading Read	and	highlight	Barrons	ch	2,	skip		this		keyword

Homework

5.06.4

Lesson	5.06 Picture	Lab	(Day	4)

Objectives

Assessments

In	Class Picture	Lab	Activity	5	&	6
Notebook	checks

Reading

Homework Barrons	ch	2	exam	(skip	#20)

5.06.5

Curriculum	Map

46

Lesson	5.06 Picture	Lab	(Day	5)

Objectives

Assessments

In	Class Picture	Lab	Activity	6
Barron's	checks

Reading Read	and	highlight	Barrons	ch	5

Homework

5.06.6

Lesson	5.06 Picture	Lab	(Day	6)

Objectives

Assessments

In	Class Picture	Lab	Activity	7

Reading

Homework SC	8.28,30

5.06.7

Lesson	5.06 Picture	Lab	(Day	7)

Objectives

Assessments

In	Class Picture	Lab	Activity	8

Reading 8.5

Homework Finish	Picture	Lab	Activity	8

5.06.8

Lesson	5.06 Picture	Lab	(Day	8)

Objectives

Assessments

In	Class Picture	Lab	Activity	9

Reading

Homework Cont.	Picture	Lab	Activity	9

Curriculum	Map

47

5.06.9

Lesson	5.06 Picture	Lab	(Day	9)

Objectives

Assessments

In	Class Picture	Lab	Activity	9,	cont.

Reading

Homework Submit	questions	for	review

5.07

Lesson	5.07 Review

Objectives Students	will	identify	weaknesses	in	their	Unit	5	knowledge.

Assessments Students	will	create	a	personalized	list	of	review	topics	to	guide
tonight’s	study	session.

In	Class
Review	questions
WS	5.7
Test	practice

Reading

Homework Study

5.99

Unit	5	Test Object	Oriented	Programming

In	Class Test	4	Section	I
Test	4	Section	II

Unit	6:	Inheritance	&	Polymorphism	(4	weeks)
Unit	6	Slides
Unit	6	Word	Bank
Curriculum	Assets

Curriculum	Map

48

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit5/WS%205.7.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit6/Unit6.pptx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit6/Unit%206%20Word%20Bank.docx

Text	Excel

LP Title In	Class Reading Homework

6.00 Test	Review	&
Reteach (Review	test) 9.1 Test	corrections

6.01
01

Inheritance
Basics	(day	1)

WS	6.1	Start
class	poster
Example	6.1

"9.2	up	to
""Dividend
Stock
Behavior"""

Collect	images

6.01
02

Inheritance
Basics	(day	2)

Finish	class
poster,	discuss

6.02

Overriding
Methods	&
Accessing
Inherited	Code

WS	6.2

Rest	of	9.2
starting	from
“The	Object
Class.”

6.03
Interacting	with
the	Object
Superclass

Practice-It	SC
9.3,	9.4,	9.9,
9.10,	E	9.4;WS
6.3
Poster	6.3

9.3	up	to
“Interpreting
Inheritance
Code.”

6.04 Polymorphism
WS	6.4.1
WS	6.4.2
SC	9.11-9.17

Rest	of	9.4	“Is-
a	Versus	Has-
a
Relationships.”

SC	9.18,	9.20

6.05 Has-a
Relationships

WS	6.5
ValueMeal
exercise?

9.5

6.06 Interfaces
[Interface
examples]
Poster	6.6

9.6

Generate	own	class
hierarchy	like
Financial	hierarchy	in
book

6.07
01

Programming
project	(day	1)

PP	9.1,
notebook
checks

Outline	ch	9

6.07
02

Programming
project	(day	2)

PP	9.1,	outline
checks

Read	and
outline	Barrons
ch	4

6.07
03

Programming
project	(day	3) PP	9.3 Barrons	ch	4	exam,

self-grade

6.07
04

Programming
project	(day	4) E	9.8

Read	and
outline	Barrons
ch	3

6.07 Programming Barrons	ch	3
exam,	outline Review	ch	9

Submit	questions	for

Curriculum	Map

49

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit6/WS%206.1.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit6/Example%206.1.jpg
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit6/WS%206.2.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit6/WS%206.3.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit6/Poster%206.3.pptx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit6/WS%206.4.1.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit6/WS%206.4.2.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit6/WS%206.5.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit6/Poster%206.6.pptx

checks

6.08 Finding	&
Fixing	Errors (Fix	HW) Review	ch	9 Submit	questions	for

review

6.09 Review

Review
questions
WS	6.5	Test
practice

Study

6.99 Unit	6	test

Test	5	Guide
Test	5	Section	I
Test	5	Section
II

6.XX Text	Excel

Text	Excel
Student	Guide
A
Text	Excel
Student	Guide
B
Text	Excel
Student	Guide
C
Text	Excel
Teacher	Guide

6.00

Lesson	6.00 Test	Review	&	Reteach

Objectives Students	will	re-learn	or	strengthen	content	knowledge	and	skills	from
Unit	5.

Assessments Students	will	re-submit	test	answers	with	updated	corrections	for
partial	or	full	credit,	depending	on	instructor	preference.

In	Class Review	test

Reading 9.1

Homework Test	corrections

6.01.1

Curriculum	Map

50

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit6/WS%206.5.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit6/Text%20Excel%20A%20Student%20Guide.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit6/Text%20Excel%20B%20Student%20Guide.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit6/Text%20Excel%20C%20Student%20Guide.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit6/Text%20Excel%20Teacher%20Guide.docx

Lesson	6.01 Inheritance	Basics	(Day	1)

Objectives

Students	will	correctly	define	inheritance
Students	will	use	proper	syntax	to	extend	a	class.
Students	will	illustrate	is-a	relationships.
Students	will	properly	implement	constructors	of	derived	classes
using	super.

Assessments Students	will	complete	a	Class	Heirarchy	Poster	as	indicated	in	WS
6.1.

In	Class
WS	6.1
Start	class	poster
Example	6.1

Reading 9.2	up	to	“Dividend	Stock	Behavior”

Homework Collect	images

6.01.2

Lesson	6.01 Inheritance	Basics	(Day	2)

Objectives

Assessments

In	Class Finish	class	poster
Discussion

Reading

Homework

6.02

Lesson	6.02 Overriding	Methods	&	Accessing	Inherited	Code

Objectives
Students	will	replace	superclass	behavior	by	writing	overriding
methods	in	the	subclass.
Students	will	write	subclass	methods	that	access	superclass
methods.

Assessments Students	will	add	code	to	their	Class	Posters	from	the	previous
lesson.

In	Class WS	6.2

Reading Rest	of	9.2	starting	from	“The	Object	Class”

Homework

6.03

Curriculum	Map

51

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit6/WS%206.1.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit6/Example%206.1.jpg
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit6/WS%206.2.docx

Lesson	6.03 Interacting	with	the	Object	Superclass

Objectives
Students	will	replace	superclass	behavior	by	writing	overriding
methods	in	the	subclass.
Students	will	write	subclass	methods	that	access	superclass
methods.

Assessments Students	will	complete	Practice-It	questions
Students	will	complete	a	worksheet.

In	Class

Practice-It
SC	9.3–4,9–10
E	9.4
WS	6.3
Poster	6.3

Reading 9.3	up	to	“Interpreting	Inheritance	Code”

Homework

6.04

Lesson	6.04 Polymorphism

Objectives
Students	will	define	polymorphism.
Students	will	trace	the	execution	of	methods	through	a	class	hierarchy
and	predict	output.

Assessments Students	will	complete	a	Tracing	Inheritance	guide	and	complete
worksheet	6.4.

In	Class
WS	6.4.1
WS	6.4.2
SC	9.11–17

Reading Rest	of	9.4	“Is-a	Versus	Has-a	Relationships”

Homework SC	9.18,20

6.05

Curriculum	Map

52

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit6/WS%206.3.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit6/Poster%206.3.pptx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit6/WS%206.4.1.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit6/WS%206.4.2.docx

Lesson	6.05 Has-a	Relationships

Objectives
Students	will	be	able	to	identify	and	explain	why	two	classes	have	an
is-a	or	a	has-a	relationship.
Students	will	be	able	to	create	a	has-a	relationship	between	two
classes.

Assessments Students	will	complete	an	AP	Section	II	question	“Trio”

In	Class WS	6.5
ValueMeal	exercise

Reading 9.5

Homework

6.06

Lesson	6.06 Interfaces

Objectives Students	will	implement	and	use	interfaces.

Assessments Students	will	complete	an	in-class	competition.

In	Class Interface	examples
Poster	6.6

Reading 9.6

Homework Generate	own	class	hierarchy	like	Financial	hierarchy	in	book

6.07.1

Lesson	6.07 Programming	project	(Day	1)

Objectives Students	will	write	complex	code	that	uses	polymorphism,	inheritance,
and	interfaces.

Assessments Students	will	submit	a	program	electronically.

In	Class PP	9.1
Notebook	checks

Reading

Homework Outline	ch	9

6.07.2

Curriculum	Map

53

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit6/WS%206.5.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit6/Poster%206.6.pptx

Lesson	6.07 Programming	project	(Day	2)

Objectives

Assessments

In	Class PP	9.1
Outline	checks

Reading Read	and	outline	Barrons	ch	4

Homework

6.07.3

Lesson	6.07 Programming	project	(Day	3)

Objectives

Assessments

In	Class PP	9.3

Reading

Homework Barrons	ch	4	exam,	self-grade

6.07.4

Lesson	6.07 Programming	project	(Day	4)

Objectives

Assessments

In	Class EX	9.8

Reading Read	and	outline	Barrons	ch	3

Homework

6.07.5

Curriculum	Map

54

Lesson	6.07 Programming	project	(Day	5)

Objectives

Assessments

In	Class Barrons	ch	3	exam
Outline	checks

Reading Review	ch	9

Homework Submit	questions	for	review

6.08

Lesson	6.08 Finding	&	Fixing	Errors

Objectives Students	will	find	errors	in	their	returned	homework	assignments,	and
correct	their	code.

Assessments Students	will	re-submit	all	homework	assignments	with	corrected
answers.

In	Class Fix	homework

Reading Review	ch	9

Homework Submit	questions	for	review

6.09

Lesson	6.09 Review

Objectives Students	will	identify	weaknesses	in	their	Unit	6	knowledge.

Assessments Students	will	create	a	personalized	list	of	review	topics	to	guide
tonight’s	study	session.

In	Class
Review	questions
WS	6.5
Test	practice

Reading

Homework Study

6.99

Curriculum	Map

55

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit6/WS%206.5.docx

Unit	6	Test Inheritance	and	Polymorphism

Guide Test	5	Guide

In	Class Test	5	Section	I
Test	5	Section	II

6.XX

Unit	6	Project Text	Excel

In	Class

Text	Excel
Text	Excel	Student	Guide	A
Text	Excel	Student	Guide	B
Text	Excel	Student	Guide	C
Text	Excel	Teacher	Guide

Unit	7:	Searching	&	Sorting	(3	weeks)
Unit	7	Slides
Unit	7	Word	Bank
Curriculum	Assets
Elevens	Lab

LP Title In	Class Reading Homework

7.00
Test
Review	&
Reteach

Review	test 13.1	up	to
“Sorting” Test	corrections

7.01 Searching
Algorithms

(CS	Unplugged
Battleship)
WS	7.1

13.1	“Sorting” SC	13.4-13.6,
E	13.1-13.3

7.02 Sorting
Algorithms 13.1	“Shuffling”

7.03
01

Elevens
Lab	(day
1)

Elevens	Lab	Activity	1
"13.3	skip
""Recursive
Binary	Search"""

SC	13.16-
13.21,	13.23,
13.24

7.03
02

Elevens
Lab	(day
2)

Elevens	Lab	Activity	2
(begin)

Curriculum	Map

56

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit6/Text%20Excel%20A%20Student%20Guide.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit6/Text%20Excel%20B%20Student%20Guide.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit6/Text%20Excel%20C%20Student%20Guide.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit6/Text%20Excel%20Teacher%20Guide.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit7/Unit7.pptx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit7/Unit%207%20Word%20Bank.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit7/WS%207.1.docx

7.03
03

Elevens
Lab	(day
3)

Elevens	Lab	Activity	2
(end)

Summarize
notes	since	last
exam

7.03
04

Elevens
Lab	(day
4)

Elevens	Lab	Activity	3
(begin),	notebook
checks

Outline	ch	13

7.03
05

Elevens
Lab	(day
5)

Elevens	Lab	Activity	3
(end),	notebook	checks

Read	and	outline
Barrons	ch	8

7.03
06

Elevens
Lab	(day
6)

Elevens	Lab	Activity	4
Barrons	ch	8
exam,	self-
grade

7.03
07

Elevens
Lab	(day
7)

Elevens	Lab	Activity	5
(begin),	Barron's
checks

7.03
08

Elevens
Lab	(day
8)

Elevens	Lab	Activity	5
(end)

7.03
09

Elevens
Lab	(day
9)

Elevens	Lab	Activity	6 (Fix	HW)

7.03
10

Elevens
Lab	(day
10)

Elevens	Lab	Activity	7 (Fix	HW)

7.03
11

Elevens
Lab	(day
11)

Elevens	Lab	Activity	8,
re-grade	fixed	HW

7.03
12

Elevens
Lab	(day
12)

Elevens	Lab	Activity	9
(begin),	re-grade	fixed
HW

7.03
13

Elevens
Lab	(day
13)

Elevens	Lab	Activity	9
(end),	re-grade	fixed
HW

Submit
questions	for
review

7.03
14

Elevens
Lab	(day
14)

Elevens	Lab	Activity
10,	re-grade	fixed	HW

7.03
15

Elevens
Lab	(day
15)

Elevens	Lab	Activity	11
(begin)

7.03
16

Elevens
Lab	(day
16)

Elevens	Lab	Activity	11
(end)

7.04 Review Review	questions Study

Curriculum	Map

57

7.99 Unit	7	test
Test	6	Guide
Test	6	Section	I
Test	6	Section	II

7.00

Lesson	7.00 Test	Review	&	Reteach

Objectives Students	will	re-learn	or	strengthen	content	knowledge	and	skills	from
Unit	6.

Assessments Students	will	re-submit	test	answers	with	updated	corrections	for
partial	or	full	credit,	depending	on	instructor	preference.

In	Class Review	test

Reading 13.1	up	to	“Sorting”

Homework Test	corrections

7.01

Lesson	7.01 Searching	Algorithms

Objectives Students	will	compare	and	contrast	the	different	search	algorithms.

Assessments Students	will	complete	some	short	answer	questions.

In	Class CS	Unplugged	Battleship
WS	7.1

Reading 13.1	“Sorting”

Homework SC	13.4–6
E	13.1–3

7.02

Lesson	7.02 Sorting	Algorithms

Objectives Students	will	compare	and	contrast	different	sorting	methods	and
evaluate	their	relative	speed	and	efficiency.

Assessments Students	will	complete	some	short	answer	questions	on	worksheets.

In	Class

Reading 13.1	“Shuffling”

Homework

7.03.1

Curriculum	Map

58

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit7/WS%207.1.docx

Lesson	7.03 Elevens	lab	(Day	1)

Objectives
Students	will	complete	a	long-form	lab,	demonstrating	effective	use	of
object	oriented	program	design,	program	implementation	and
analysis,	and	standard	data	structures	and	algorithms.

Assessments Elevens	Lab

In	Class Elevens	Lab	Activity	1

Reading 13.3	(skip	“Recursive	Binary	Search”)

Homework SC	13.16–21,23–24

7.03.2

Lesson	7.03 Elevens	lab	(Day	2)

Objectives

Assessments

In	Class Elevens	Lab	Activity	2	(begin)

Reading

Homework

7.03.3

Lesson	7.03 Elevens	lab	(Day	3)

Objectives

Assessments

In	Class Elevens	Lab	Activity	2	(end)

Reading

Homework Summarize	notes	since	last	exam

7.03.4

Curriculum	Map

59

Lesson	7.03 Elevens	lab	(Day	4)

Objectives

Assessments

In	Class Elevens	Lab	Activity	3	(begin)
Notebook	checks

Reading

Homework Outline	ch	13

7.03.5

Lesson	7.03 Elevens	lab	(Day	5)

Objectives

Assessments

In	Class Elevens	Lab	Activity	3	(end)
Notebook	checks

Reading Read	and	outline	Barrons	ch	8

Homework

7.03.6

Lesson	7.03 Elevens	lab	(Day	6)

Objectives

Assessments

In	Class Elevens	Lab	Activity	4

Reading

Homework Barrons	ch	8	exam,	self-grade

7.03.7

Curriculum	Map

60

Lesson	7.03 Elevens	lab	(Day	7)

Objectives

Assessments

In	Class Elevens	Lab	Activity	5	(begin)
Barron's	checks

Reading

Homework

7.03.8

Lesson	7.03 Elevens	lab	(Day	8)

Objectives

Assessments

In	Class Elevens	Lab	Activity	5	(end)

Reading

Homework

7.03.9

Lesson	7.03 Elevens	lab	(Day	9)

Objectives

Assessments

In	Class Elevens	Lab	Activity	6

Reading

Homework Fix	homework

7.03.10

Lesson	7.03 Elevens	lab	(Day	10)

Objectives

Assessments

In	Class Elevens	Lab	Activity	7

Reading

Homework Fix	homework

Curriculum	Map

61

7.03.11

Lesson	7.03 Elevens	lab	(Day	11)

Objectives

Assessments

In	Class Elevens	Lab	Activity	8
Re-grade	fixed	homework

Reading

Homework

7.03.12

Lesson	7.03 Elevens	lab	(Day	12)

Objectives

Assessments

In	Class Elevens	Lab	Activity	9	(begin)
Re-grade	fixed	homework

Reading

Homework

7.03.13

Lesson	7.03 Elevens	lab	(Day	13)

Objectives

Assessments

In	Class Elevens	Lab	Activity	9	(end)
Re-grade	fixed	homework

Reading

Homework Submit	questions	for	review

7.03.14

Curriculum	Map

62

Lesson	7.03 Elevens	lab	(Day	14)

Objectives

Assessments

In	Class Elevens	Lab	Activity	10
Re-grade	fixed	homework

Reading

Homework

7.03.15

Lesson	7.03 Elevens	lab	(Day	15)

Objectives

Assessments

In	Class Elevens	Lab	Activity	11	(begin)

Reading

Homework

7.03.16

Lesson	7.03 Elevens	lab	(Day	16)

Objectives

Assessments

In	Class Elevens	Lab	Activity	11	(end)

Reading

Homework

7.04

Curriculum	Map

63

Lesson	7.04 Review

Objectives Students	will	identify	weaknesses	in	their	Unit	7	knowledge.

Assessments Students	will	create	a	personalized	list	of	review	topics	to	guide
tonight’s	study	session.

In	Class Review	questions

Reading

Homework Study

7.99

Unit	7	Test Searching	&	Sorting

Guide Test	6	Guide

In	Class Test	6	Section	I
Test	6	Section	II

Unit	8:	Recursion	(2	weeks)
Unit	8	Slides
Unit	8	Word	Bank
Curriculum	Assets

Curriculum	Map

64

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit8/Unit8.pptx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit8/Unit%208%20Word%20Bank.docx

LP Title In	Class Reading Homework

8.00 Test	Review	&
Reteach Review	test 12.1	up	to	“Structure	of

recursive	solutions”
Test
corrections

8.01 Thinking
Recursively

Tower	of
Hanoi
game

Rest	of	12.1

8.02
Writing
Recursive
Solutions

Grudgeball
SC	12.1	-
12.4

12.2 SC	12.5,	12.7-
12.9,	E	12.1

8.03 Mechanics	of
Recursion

WS	8.3
Teacher
Demo	8.3

13.4? SC	12.6,
12.10,	E	12.3

8.04 MergeSort Implement
mergeSort

SC	13.27-
13.30
Notebook
Check

8.05 Finding	&
Fixing	Errors Fix	HW Review	ch	12.1,	12.2

Submit
questions	for
review

8.06 Review Study

8.07 Quiz [Quiz	8] Barrons	ch	7

[8.08] Quiz	Review	&
Reteach

Review
quiz Barrons	ch	7

8.00

Lesson	8.00 Test	Review	&	Reteach

Objectives Students	will	re-learn	or	strengthen	content	knowledge	and	skills	from
Unit	7.

Assessments Students	will	re-submit	test	answers	with	updated	corrections	for
partial	or	full	credit,	depending	on	instructor	preference.

In	Class Review	test

Reading 12.1	up	to	“Structure	of	Recursive	Solutions”

Homework Test	corrections

8.01

Curriculum	Map

65

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit8/WS%208.3.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit8/Teacher%20Demo%208.3.docx

Lesson	8.01 Thinking	Recursively

Objectives Students	will	be	able	to	define	recursion.

Assessments Students	will	describe	recursive	methods	and	compare	iterative	and
recursive	methods	during	a	class	discussion.

In	Class Tower	of	Hanoi	game

Reading Rest	of	12.1

Homework

8.02

Lesson	8.02 Writing	Recursive	Solutions

Objectives Students	will	be	able	to	identify	recursive	methods	and	predict	the
output	(or	return	value)	of	recursive	methods.

Assessments Students	will	evaluate	statements	and	predict	output	during	a	game	of
Grudgeball.

In	Class Grudgeball
SC	12.1–4

Reading 12.2

Homework SC	12.5,7–9
E	12.1

8.03

Lesson	8.03 Mechanics	of	Recursion

Objectives Students	will	be	able	to	model	how	recursive	methods	execute.

Assessments
Students	will	write	a	recursive	method,	then	model	the	execution	of
that	method	for	the	instructor.
Students	will	also	model	a	method	written	by	their	peers.

In	Class WS	8.3
Teacher	Demo	8.3

Reading 13.4

Homework SC	12.6,10
E	12.3

8.04

Curriculum	Map

66

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit8/WS%208.3.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit8/Teacher%20Demo%208.3.docx

Lesson	8.04 MergeSort

Objectives Students	will	use	mergeSort	to	sort	an	ArrayList.

Assessments Students	will	be	able	to	use	recursion	to	sort	a	list.

In	Class Implement	mergeSort

Reading

Homework SC	13.27–30
Notebook	Check

8.05

Lesson	8.05 Finding	&	Fixing	Errors

Objectives Students	will	find	errors	in	their	returned	homework	and	classwork.

Assessments Students	will	re-submit	all	homework	and	classwork	assignments	with
corrected	answers.

In	Class Fix	homework

Reading Review	ch	12.1–2

Homework Submit	questions	for	review

8.06

Lesson	8.06 Review

Objectives Students	will	identify	weaknesses	in	their	Unit	8	knowledge.

Assessments Students	will	create	a	personalized	list	of	review	topics	to	guide
tonight's	study	session.

In	Class Review	Questions

Reading

Homework Study

8.07

Lesson	8.07 Review	&	Quiz

In	Class [Quiz	8]

8.08

Curriculum	Map

67

Lesson	8.07 Quiz	Review	&	Reteach

Objectives Students	will	re-learn	or	strengthen	content	knowledge	and	skills	from
Unit	8.

Assessments Re-submit	quiz	answers	with	updated	corrections	for	partial	or	full
credit.

In	Class Review	quiz

Reading

Homework Barrons	ch	7

Unit	9:	AP	Test	Review	(3	weeks)
Curriculum	Assets

9.00

Lesson	9.00 Reviewing	for	the	AP	Exam

Objectives Students	will	review	and	prepare	for	the	AP	Computer	Science	A
exam.

Assessments Bellevue	Mastery	Tests
AP	CS	2012	Section	II

In	Class

Reading

Homework

Unit	10:	Post-AP	Exam	Projects	(4–5	weeks)

Curriculum	Map

68

We	currently	have	two	different	curriculum	options	for	after	the	AP	exam,	each	of	which	is	a
self-contained	website	with	lessons,	labs	and	other	supporting	resources:

SpaceBattleArena
TEALS	Minecraft	Modding

Curriculum	Map

69

http://mikeware.github.io/SpaceBattleArena/
https://tealsk12.github.io/teals-minecraft/

TEALS	AP	CS	A	Curriculum	Assets
The	TEALS	AP	CS	A	Curriculum	assets	may	be	downloaded	from	the	Additional	Curriculum
Materials	section	of	the	TEALS	Dashboard

[Note:	you	need	to	be	a	current	TEALS	volunteer	or	classroom	teacher	to	acess	the	TEALS
Dashboard]

The	latest	version	is	TEALS-APCSA-Curriculum-v2.0.2.zip.

Contents
	/Projects/	

	/Projects/APCSA-Elevens-v1.X.X.zip		The	Unit	7	Elevens	Lab.	Extracting	this
archive,	you'll	find	the	Teacher	Guide,	and	the	student-distributable	package.	Get
started	by	reading		TeacherMaterials/Elevens-Teacher-Guide.pdf	.

	/Projects/APCSA-FracCalc-v1.X.X.zip		The	Unit	3	Fractional	Calculator	Project.
Inside	this	archive	you'll	find	documentation	and	student	starter	source	code.

	/Projects/APCSA-Magpie-v1.X.X.zip		The	Unit	4	Magpie	Chatbot	Lab.	Inside	this
archive	you'll	find	the	teacher	guide,	teacher	solution	source	code,	and	the
distributable	starter	code	archive	for	students.	Get	started	by	reading		Magpie-
Teacher-Guide.pdf	.

	/Projects/APCSA-PictureLab-v1.X.X.zip		The	Unit	5	Picture	Lab.	This	archive
contains	the	teacher	guide,	teacher	solution	code,	and	distributable	starter	package
for	students.	Get	started	by	reading		TeacherMaterials/pixLab-Teacher-Guide.pdf	.

	/Projects/APCSA-TextExcel-v1.X.X.zip		The	Unit	6	Text	Excel	Project.	This	archive
contains	the	teacher	guide,	teacher	solution	code,	and	distributable	starter	project
for	students.	Get	started	by	reading		guides/Text	Excel	Teacher	Guide.docx	.

	/Unit*/		Assets	for	each	of	the	APCSA	curriculum	units.	In	general,	each	Word	file	will
have	a	corresponding	PDF	equivalent.	Worksheets	are	generally	of	the	form		"WS
#.#.docx"		and		"WS	#.#.pdf"	.

	/Unit1/		—	Assets	for	Unit	1:	Programming	&	Java.
	/Unit2/		—	Assets	for	Unit	2:	Working	with	Data	&	Basic	Control	Flow.
	/Unit3/		—	Assets	for	Unit	3:	Advanced	Data	&	Control	Flow.
	/Unit4/		—	Assets	for	Unit	4:	Arrays,	Lists	&	Files.

Curriculum	Assets

70

https://www.tealsk12.org/dashboard/curriculum-repository/

	/Unit5/		—	Assets	for	Unit	5:	Object-Oriented	Programming.
	/Unit6/		—	Assets	for	Unit	6:	Inheritance	&	Polymorphism.
	/Unit7/		—	Assets	for	Unit	7:	Searching	&	Sorting.
	/Unit8/		—	Assets	for	Unit	8:	Recursion.
	/Unit9/		—	Assets	for	Unit	9:	AP	Test	Review.

Curriculum	Assets

71

Lesson	1.01	—	Using	Eclipse	&	Practice-It
N.B.	THIS	LESSON	IS	OPTIONAL

Overview

Objectives	—	Students	will	be	able	to…

Describe	one	or	more	careers	related	to	computer	science	and	technology.
Ask	intelligent	questions	about	the	field	of	computer	science.
Identify	'next	steps'	to	learn	more	about	computer	science
List	the	class	expectations	and	what	is	required	of	them.

Assessments	—	Students	will…

Demonstrate	Plug-In	and	Un-Plug	procedures
Log	in	and	submit	a	sample	problem	in	Practice-It

Homework	—	Students	will…

Visit	http://www.pokemon.com	and	play	a	few	games	or	play	Pokémon	on	a	gaming
system
Visit	http://bulbapedia.bulbagarden.net	to	familiarize	yourself	with	the	Pokémon
franchise

Materials	&	Prep
Projector	and	computer
Student	Computers	with	Eclipse	installed
Classroom	copies	of	WS	1.1.1	and	WS	1.1.2
USB	Drives	for	each	student	(if	applicable	to	school)
Handout/Slide	Deck	demonstrating	file	submission	procedure

If	your	school	does	not	have	a	designated	IT	specialist	available	to	install	Eclipse	on	the
classroom	computers,	WS	1.1.1	offers	step-by-step	installation	directions,	with	screenshots.
If	your	students	have	computers	at	home,	or	if	your	school	loans	them	laptops	for	homework

Lesson	1.01:	Using	Eclipse	&	Practice	It

72

http://www.pokemon.com
http://bulbapedia.bulbagarden.net
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit1/WS%201.1.1.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit1/WS%201.1.2.docx

and	labs,	you	can	print	out	copies	of	WS	1.1.1	for	your	students	so	they	can	install	Eclipse
on	their	home	computers.

If	your	school	distributes	USB	drives,	model	best	practices	by	wearing	your	USB	drive	on
your	ID	lanyard	or	keychain.	Students	will	lose	and/or	forget	their	drives	unless	they	are
attached	to	another	object	they	use	daily!

Since	all	instructors	have	different	preferences	and	requirements	for	file	uploads/sharing,	we
have	not	included	a	procedure	for	file	submission.	You	should	prepare	a	handout	or	slide
deck	demonstrating	your	procedure	for	submitting	work,	and	have	students	send	you	a
sample	file	to	assess	understanding	of	your	procedure.	10	minutes	of	this	lesson	have	been
reserved	for	you	to	teach	these	procedures.

Pacing	Guide

Section Total	Time

Bell-work	and	attendance 5min

Classroom	Introduction
Icebreakers	&	Background 20min

Plug-In	&	Un-Plug	Procedure
Demonstration	and	practice 10min

Practice-It
Account	setup	and	login	practice 10min

File	Submission	Procedure
Demonstration	and	practice 10min

Procedure

Bell-work	and	Attendance	[5	minutes]

Classroom	Introduction	[20	minutes]

1.	 Using	the	slide	deck	as	a	base	(edit	the	deck	to	fit	your	needs):

Poll	your	class	to	learn	their	names,	experience,	and	rationale	behind	taking	the
course.
Go	over	background	information	of	the	computer	science	field.
Go	over	class	expectations	and	information.
Touch	on	school	requirements	(varies)	e.g.	syllabus.

Lesson	1.01:	Using	Eclipse	&	Practice	It

73

2.	 Class	icebreakers	(varies	school	to	school).

Plug-In	&	Un-Plug	Procedure	[10	minutes]

1.	 Using	WS	1.1.2,	model	the	steps	for:

Opening	Eclipse	and	a	workspace
Creating	and	saving	a	program
Ejecting	the	USB	(if	applicable)

2.	 Have	students	demonstrate	the	Plug	In	and	Un-Plug	procedures	for	you	before	you
move	on	to	the	Practice-It	exercise.

If	your	classroom	has	a	projector	hooked	up	to	the	teacher’s	computer,	project	each	step	as
you	model	it	for	the	students.

Wait	until	all	students	have	completed	a	step	before	moving	on	to	another	step.

Expect	this	exercise	to	take	10	minutes	or	longer.

Practice-It	[10	minutes]

1.	 Using	WS	1.1.2,	model	the	steps	for	creating	a	Practice-It	account.	Since	you	will
probably	already	have	an	account,	select	a	student	account	to	use	as	a	model.

2.	 Have	all	students	submit	a	Practice-It	problem	to	demonstrate	that	they	know	how	to
use	Practice-It.

Wait	until	all	students	have	completed	a	step	before	moving	on	to	another	step.

If	you	have	extra	time	in	class,	introduce	a	“Scavenger	Hunt”	on	Practice-It,	and	have
students	find:

Where	their	account	information	is	located
Where	a	record	of	their	completed	problems	are	located
Where	the	3rd	Self-Check	problem	for	Chapter	7	is	located

File	Submission	Procedure	[10	minutes]

1.	 Demonstrate	your	procedure	for	file	submission.	Use	a	handout	or	slide	deck	to
illustrate	this	procedure.

2.	 Have	students	send	a	sample	file	to	assess	understanding	of	the	procedure.

Accommodation	and	Differentiation

Lesson	1.01:	Using	Eclipse	&	Practice	It

74

Allow	students	to	work	in	pairs	if	they	are	having	trouble	understanding	the	directions.
Encourage	pairs	to	model	the	correct	procedure	for	each	other.	Student	helpers	should	point
to	areas	on	the	screen	rather	than	typing	or	using	the	mouse	to	complete	the	action.

Teacher	Prior	CS	Knowledge
IDEs	(Integrated	Development	Environments)	are	widely	used	in	industry	to	develop
software.	Prior	to	IDEs,	software	engineers	used	simple	text	editors	to	write	programs.	While
teachers	are	welcome	to	choose	from	a	wide	variety	of	IDEs	(see	https://jaxenter.com/the-
top-java-ides-114599.html	for	a	comparison)	or	even	use	text	editors,	TEALS	supports
Eclipse	in	the	AP	CS	A	curriculum.	Whichever	IDE/editor	you	choose,	it’s	a	good	idea	to	run
through	a	few	IDE	tutorials	to	familiarize	yourself	with	the	workflow	before	demonstrating	to
the	class.

Teaching	Tips
Tips	for	Volunteers:	http://csteachingtips.org/Tips-for-classroom-volunteers

Tips	for	Reducing	Bias:	http://csteachingtips.org/tips-for-reducing-bias

Class	Introduction:	Students	will	end	up	in	your	computer	science	class	for	a	variety	of
reasons,	here	a	few	that	are	common:

My	math	teacher	recommended	I	take	computer	science
My	friend	is	in	the	class
I	like	computers
It	fit	in	my	schedule
It	showed	up	in	my	schedule
It’s	an	AP	class	and	would	look	good	on	my	transcript
I	build	apps	in	my	spare	time

By	knowing	the	student’s	motivation,	you	can	better	understand	where	the	student	is
coming	from.	I	use	this	information	to	inform	the	pace	and	depth	of	the	initial	lessons.	I
also	try	to	determine	the	level	of	programming	experience	of	each	student.	This	helps
with	group	formation	in	the	beginning	lessons	where	you	try	to	pair	experienced
students	with	less	experienced	students	to	the	students	can	learn	from	their	peers.

Misconceptions

Lesson	1.01:	Using	Eclipse	&	Practice	It

75

https://jaxenter.com/the-top-java-ides-114599.html
http://csteachingtips.org/Tips-for-classroom-volunteers
http://csteachingtips.org/tips-for-reducing-bias

When	introducing	the	Java	programming	language,	many	students	will	think	Java	is
synonymous	with	JavaScript.	Although	both	are	programing	languages	and	many	of	the
constructs	are	transferable	between	the	two	languages,	Java	and	JavaScript	are	two
different	languages.	JavaScript	is	used	today	for	both	client	side	web	browser	scripting	to
web	servers.	Java	is	used	to	create	platform	independent	apps	meaning	a	program	written
in	Java	will	run	across	a	variety	of	operating	systems.

Forum	discussion
Lesson	1.01	Using	Eclipse	&	Practice-it	(TEALS	Discourse	account	required)

Lesson	1.01:	Using	Eclipse	&	Practice	It

76

http://forums.tealsk12.org/c/ap-cs-a-unit-1/1-01-using-eclipse-practice-it

Lesson	1.02	—	Algorithms	&
Computational	Thinking

Overview

Objectives	—	Students	will	be	able	to…

Define	algorithms,	programs,	hardware,	software,	and	operating	systems.
Describe	the	relationships	between	these	concepts	and	components.

Assessments	—	Students	will…

Write	sample	algorithms
Assemble	and	debug	a	program	that	directs	the	instructor	to	make	a	sandwich

Homework	—	Students	will…

Read	BJP	1.2

Materials	&	Prep
Projector	and	computer	OR	whiteboard	and	marker
Food	items	for	peanut	butter	and	jelly	sandwich
Utensils	for	sandwich	assembly	(spoon	for	jelly,	knife	for	spreading)
Wet	wipes	or	water	to	clean	hands

Pacing	Guide

Lesson	1.02:	Algorithms	&	Computational	Thinking

77

Section Total	Time

Bell-work	and	attendance 5min

Introduction	to	vocabulary 10min

Explaining	activity,	assigning	pairs 2min

Activity	Round	One 10min

Activity	Round	Two 10–15min

Full-class	discussion	of	debugging	methods 5min

HW	distribution	&	exit	tickets 2min

Procedure

Bell-work	and	Attendance	[5	minutes]

Introduction	to	Vocabulary	[10	minutes]

In	this	lesson,	you	will	be	using	yourself	as	the	metaphor	to	introduce	fundamental
vocabulary	in	CS.	As	a	hook,	you	should	leave	all	of	the	food	prep	materials	conspicuously
laid	out	in	the	front	of	the	classroom,	without	any	explanation.

1.	 You	should	begin	your	lesson	with	an	informal,	whole-group	conversation	about	humans
being	the	first	“computers.”	This	is	a	great	opportunity	to	use	history,	women’s
accomplishments	in	CS,	and	humor	to	offer	up	and	drill	vocabulary	without	onerous
repetition.	Some	suggestions	for	your	opening	discussion:

Computer	was	originally	a	job	description,	and	was	first	used	in	1613	to	describe
someone	who	performs	mathematical	calculations.

Early	computers	were	mostly	women:

Lesson	1.02:	Algorithms	&	Computational	Thinking

78

http://www.officemuseum.com/IMagesWWW/Early_1920s_Veterans_Bureau_Calcu
lating_WWI_Vet_Bonuses_LOC.JPG).

Human	computers	have	many	similarities	to	mechanical	computers.	See	how	many
of	these	your	students	can	predict	with	minimal	prompting:

Brain	=	CPU	and	processing
Input	=	information	(data)	from	sensing	the	environment
Sensors	=	eyes,	ears,	nose,	mouth,	fingers/skin
Output	=	behavior,	action

You	can	model	errors	and	exceptions	by	dramatically	narrating	and	acting	out	a
confusing	set	of	directions	and	the	resultant	mistake.	Depending	on	your	personal
style,	this	can	be	a	pratfall,	embarrassing	social	blunder	(real	or	imagined),	or
simple	spelling	mistake	(input:	sounding	out	a	word	with	silent	letters,	error/output:
the	misspelled	word)

2.	 Introduce	the	definition	of	an	algorithm,	and	invite	the	students	to	write	an	algorithm	for
you,	the	computer,	to	make	a	peanut	butter	and	jelly	sandwich.

An	algorithm	may	be	defined	as	“a	process	or	set	of	rules	to	be	followed	in
calculations	or	other	problem-solving	operations”

Explaining	Activity	and	Assigning	Pairs	(2	minutes)

Lesson	1.02:	Algorithms	&	Computational	Thinking

79

http://www.officemuseum.com/IMagesWWW/Early_1920s_Veterans_Bureau_Calculating_WWI_Vet_Bonuses_LOC.JPG

Give	student	pairs	5	minutes	to	write	a	peanut-butter-and-jelly	algorithm.	Specify	that	they
should	write	a	complete	set	of	directions	to	describe	the	process	of	making	the	sandwich.

Activity	Round	1	(10	minutes)

1.	 Ask	for	a	student	volunteer	to	come	to	the	front	of	the	classroom	to	“be	Java.”

2.	 Randomly	choose	a	student’s	algorithm	for	your	first	try,	and	narrate	as	“Java”	picks	up
the	“program”	to	read	to	you	(the	computer).	Point	out	that	when	Java	reads	code,	its
compiler	translates	the	code	you	type	in	so	the	computer	can	read	it	in	binary.	Bonus
points	if	you	can	get	the	volunteer	to	read	directions	in	a	robotic	voice.

3.	 Ask	your	student	volunteer	reads	the	directions	aloud,	following	instructions	literally.
Repeat	the	instruction	out	loud	as	you	model	the	action.	Usually	students	forget	to	tell
you	to	open	the	bag	of	bread,	etc.	Ham	up	the	errors,	and	stop	“executing	the	program”
when	it	becomes	clear	that	the	algorithm	won’t	result	in	a	functional	PB&J.	Point	out	that
this	is	an	error	or	exception—your	program	does	the	same	thing	when	it	gets
instructions	that	don’t	make	sense.

4.	 Repeat	this	with	1	or	2	other	algorithms,	then	graciously	agree	to	let	the	class	try	again.
Make	sure	to	use	the	phrase	“debugging”	and	have	the	students	use	it	as	well.

Activity	Round	2	(10–15	minutes)

1.	 Give	students	another	5	minutes	to	correct	their	algorithms.	If	students	are	on-task	and
really	getting	passionate	about	the	job,	give	them	a	few	extra	minutes.

2.	 Have	“Java”	select	another	“program”	from	your	students.	As	you	execute	the	program
again,	ask	the	class	what	represents	hardware,	software,	input,	output,	processing,
and	the	program.

Full-class	Discussion	of	Debugging	Methods	(5	minutes)

1.	 Ask	students	to	share	the	different	ways	they	debugged	their	code/program/algorithm.
(Changing	program	content,	switching	algorithm	order,	etc.)

2.	 Give	students	with	successful	algorithms	the	various	PB&Js	(failed	and	otherwise).

Homework	Distribution	and	Exit	Tickets	(2	minutes)

Distribute	homework	and	have	students	complete	exit	tickets.

Lesson	1.02:	Algorithms	&	Computational	Thinking

80

Accommodation	and	Differentiation
Before	delivering	this	lesson,	you	should	check	with	the	classroom	teacher	to	make	sure
none	of	the	students	have	a	peanut	allergy.	If	a	student	does	have	an	allergy,	find	out	how
severe	the	allergy	is	(you	can	opt	to	make	this	student	a	jelly	sandwich,	but	if	the	allergy	is
severe,	you	should	switch	the	demo	to	another	food	item).

In	certain	classrooms,	peanut	butter	and	jelly	might	not	be	a	familiar	food	item.	In	these
cases,	it	is	best	to	do	some	research	first	to	figure	out	what	snack	will	be	familiar	enough	to
all	your	students	that	they	can	recommend	an	algorithm	for	preparing	it.	Some	items	(such
as	Navajo	fry	bread)	might	require	additional	planning.	For	maximum	engagement,	try	to
select	a	snack	that:

Requires	3	or	more	ingredients
Requires	assembly	or	preparation	(such	as	peeling,	dicing,	etc.)
Uses	ingredients	that	are	jarred	or	wrapped
Are	generally	considered	palatable	to	most	students

In	ELL	classrooms,	you	should	pair	students	to	ease	the	writing/composition	burden	of	this
activity.	For	advanced	students,	invite	them	to	write	algorithms	for	other	activities,	such	as
getting	to	school	on	time.

Teacher	Prior	CS	Knowledge
Algorithms	are	one	of	the	fundamental	concepts	in	computer	science.	Algorithms	are
fundamental	to	solving	problems	in	computer	science.

The	lesson	plan	uses	analogy	of	the	student	as	the	compiler.	When	writing	a	Java
program	the	following	is	the	sequence	of	files	and	translations	that	are	carried	out:

1.	 Programmer	uses	an	editor	to	create	Java	program	and	saves	in	.java	file

2.	 Java	compiler	(javac	program)	takes	.java	file	and	complies	code	to	bytecode	and
saves	in	.class	file.

3.	 Java	virtual	machine	(java	program)	runs	.class	file	by	interpreting	the	bytecode	for
a	specific	machine	based	on	the	operating	system	and	hardware.

The	lesson	plan	assumes	the	teacher	has	prior	knowledge	of	the	components	of	a
physical	computer	and	can	relate	them	to	a	person.	If	you	are	not	familiar	with	the
components	of	a	computer	system:

CPU	central	processing	unit	–	brains	of	the	computer

Lesson	1.02:	Algorithms	&	Computational	Thinking

81

Disk	drive/SSD	–	long	term	storage
RAM	random	access	memory	–	short	term	storage
Keyboard,	mouse,	touch	screen	–	input	devices
Display,	sound,	vibration	–	output	devices

Teaching	Tips
Tips	for	Lecturing:	http://csteachingtips.org/tips-for-lecturing

Tips	for	Introducing	Computer	Science:	http://csteachingtips.org/Tips-for-introducing-
computing

The	lesson	plan	has	the	teacher	be	the	“computer”	that	follows	the	instructions	read
aloud	by	the	student.	You	may	be	inclined	to	have	a	student	be	the	computer.	However,
students	are	unpredictable	and	you	may	or	may	not	get	the	outcomes	you	desire.	Even
though	this	activity	is	meant	to	be	playful,	student	silliness	can	get	out	of	hand	when
building	their	P&J	sandwich.	If	you	do	choose	to	have	students	be	the	computer,	setup
norms	like	no	throwing	food	and	they	must	clean	up	after	themselves.

Other	algorithms	you	can	have	students	write	include	tying	shoe	laces,	brushing	teeth,
opening	a	locker.

Misconceptions
Sometimes	students	think	algorithms	and	computer	programs	are	synonymous.	While	they
are	related,	they	are	not	synonymous.	Humans	have	been	using	algorithms	to	solve
problems	way	before	computer	ever	existed.	The	invention	of	the	computer	created	a
platform	for	algorithms	created	that	could	be	carried	out	by	a	machine.	So	a	computer
program	is	a	tool	used	by	people	to	expresses	algorithms	that	can	be	executed	by	a
computer.

Forum	discussion
Lesson	1.02	Algorithms	Computational	Thinking	(TEALS	Discourse	account	required)

Lesson	1.02:	Algorithms	&	Computational	Thinking

82

http://csteachingtips.org/tips-for-lecturing
http://csteachingtips.org/Tips-for-introducing-computing
http://forums.tealsk12.org/c/ap-cs-a-unit-1/1-02-algorithms-computational-thinking

Lesson	1.03	—	String	&	Console	Output

Overview

Objectives	—	Students	will	be	able	to…

Describe	the	history	of	computer	science	and	Java	and	why	they're	used	today.
Correctly	assemble	a	complete	program	with	a	class	header,	body,	and	main	method.
Correctly	use	print,	println,	and	escape	sequences.

Assessments	—	Students	will…

Create	starter	Pokémon	program
Complete	several	Practice-It	questions

Homework	—	Students	will…

Read	BJP	1.3
Complete	Ch.1	exercises	1-5

Materials	&	Prep
Projector	and	computer
Whiteboard	and	marker
ASCII	Pokémon	art

Pokéball:	http://tinyurl.com/pba5x8r
Pikachu:	http://tinyurl.com/oa3g2al

Practice-It	bookmarks	(installed	on	student	computers,	if	possible)

If	you	do	not	have	a	projector	in	your	classroom,	print	out	pictures	of	the	ASCII	art,	and
place	them	around	the	room	(or	on	desks)	for	students	to	pass	around.	Make	sure	you	print
pictures	out	large	enough	so	that	students	can	see	the	characters	that	make	up	the	artwork.

Pacing	Guide

Lesson	1.03:	String	&	Console	Output

83

http://tinyurl.com/pba5x8r
http://tinyurl.com/oa3g2al

Section Total	Time

Bell-work	and	attendance 5min

Introduction	to	vocabulary	and	syntax 10min

Signing	up/into	Practice-It 10min

Practice-It	questions 15min

Pokémon	challenge 10min

Students	trade	work	and	debug 5min

Procedure
In	this	lesson,	you	will	introduce	the	parts	of	a	program,	then	have	students	create	their	first
“Hello	World”	style	program.	Your	hook	for	this	class	is	2-fold:	(1)	you	should	pump	up	the
students	to	write	their	very	first	program	ever!	(2)	Have	samples	of	ASCII	art	available	for
them	to	view,	and	let	them	know	that	they	will	be	creating	their	own	pictures	today	as	well.

Bell-work	and	Attendance	[5	minutes]

Introduction	to	Vocabulary	and	Syntax	[10	minutes]

1.	 Begin	your	lecture	with	a	quick	overview	of	Java	and	why	we’re	using	it.

Brief	history	of	Java
Key	characteristics	of	Java

2.	 Lecture	on	the	following	talking	points.	Students	should	be	able	to	lead	you	through
these	points,	as	you	are	reviewing	the	materials	from	the	reading	they	completed	for
homework:

Java	programs	always	begin	with	a	class	header,	which	follows	these	rules:
Starts	with	“public	class”	(public	because	anyone	can	access	it)
Uses	a	capitalized	name,	and	always	starts	with	a	letter
Ends	with	an	open	curly	bracket	(think	of	the	curly	brackets	as	a	box	that	holds	bits
of	code	together;	show	students	where	the	close	curly	bracket	goes)

3.	 Have	students	volunteer	several	legit	class	headers,	deliberately	make	mistakes	for
students	to	catch	(such	as	leaving	out	a	bracket,	capitalizing	incorrectly,	or	starting	class
name	with	a	number).

If	your	students	are	having	trouble	generating	class	headers,	guide	them	through	the
following	examples:

Lesson	1.03:	String	&	Console	Output

84

	public	class	MyFile	{		→	correct!
	Public	class	MyFile	{		→	incorrect,	public	should	be	lowercase
	public	Class	MyFile	{		→	incorrect,	class	should	be	lowercase
	public	class	Myfile	{		→	correct,	but	not	as	easy	to	read	file	name
	public	class	WhateverIWant	{		→	correct!
	public	class	ThisWorks2	{		→	numbers	are	OK!

4.	 Explain	that	the	“meat”	of	the	program	comes	from	the	methods	(the	parts	of	the
program	that	tell	Java	to	execute	a	particular	action	or	computation)

You	always	need	a	main	method,	which	starts	with	a	method	header:

public	static	void	main	(String[]	args)	{

Explicitly	point	out	that:

This	is	a	nonsense	list	of	words	for	now,	but	that	we’ll	return	to	what	each	part
means	later	on
Curly	brackets	“hold	the	code	together”,	and	so	there	will	always	need	to	be	a
closed	curly	bracket	at	the	end	of	the	main	method,	just	like	there’s	a	closing
curly	bracket	for	the	class

5.	 Ask	students	to	volunteer	a	short	phrase	that	they	would	like	for	their	very	first	program
to	say	(as	in		"Hello,	World!")	and	use	this	phrase	in	your	first		println		statement.

Point	out	that	the	statement:

Always	ends	in	a	semicolon
Represents	1	complete	order/command
Tells	Java	to	print	the	words	within	the	quotation	marks,	then	go	to	the	next	line
(ln)

Have	students	check	the	code	you’ve	written	down	on	the	board.	With	the	class,
model	how	to	check	code	by	scanning	each	line,	character	by	character,	having
students	offer	the	rules	for	class	and	method	headers/body,	and	statements.

Erase	the	“ln”	from	your	print	statement,	and	ask	students	to	guess	what	Java	will
do	with	that	code	(it	won’t	return	after	outputting	the	string).

Finally,	bring	students’	attention	to	escape	sequences,	and	add	some	quotation
marks	to	your	sample	code	as	an	example.

Signing	Up/Into	Practice-It	[10	minutes]

Lesson	1.03:	String	&	Console	Output

85

Walk	your	students	through	Practice-It	account	sign-up.	Students	will	need	access	to	their
email	accounts	to	complete	set	up.	(If	your	classroom	does	not	have	computers,	transfer
Practice-It	questions	to	a	worksheet,	and	have	students	complete	the	practice	problems	by
writing	out	the	answers.)

Practice-It	Questions	(15	minutes)

Have	students	complete	the	following	Practice-It	questions:

1.	 legalIdentifiers
2.	 outputSyntax
3.	 confounding
4.	 Archie
5.	 downwardSpiral
6.	 DoubleSlash
7.	 Sally
8.	 TestOfKnowledge

Pokémon	Challenge	(10	minutes)

On	the	board	or	projector,	post	the	following	challenge:

Write	a	program	called	Welcome	that	outputs	the	following:

Pikachu	welcomes	you	to	the	world	of	Pokémon!

	(__/)

	(o^.^)

z(_(")(")

Students	Trade	Work	and	Debug	(5	minutes)

Have	students	trade	their	work	and	debug	each	other’s	programs.

If	Eclipse	is	available,	have	students	mail	you	their	completed	program	using	the	file
submission	procedure	of	your	choice.	Otherwise,	have	students	submit	a	handwritten	form
AFTER	they	have	traded	their	paper	with	a	friend	to	check	and	debug.

Accommodation	and	Differentiation
If	students	are	struggling	with	the	Pokemon	challenge:

Lesson	1.03:	String	&	Console	Output

86

Try	pairing	up	students	so	they	can	check	each	other	as	they	work
Write	the	first	line	of	Pikachu	code	together	as	a	class,	modeling	the	use	of	escape
sequences

If	you	have	students	who	are	speeding	through	this	lesson,	you	should	encourage	them	to:

Add	additional	pictures	or	text	to	their	Welcome	program,
Help	a	student	that	is	struggling	with	the	material,
Create	a	poster	for	the	classroom	with	steps	(an	algorithm!)	for	checking	code	for	errors
(many	tips	can	be	found	in	§	1.3).

About	Pokemon
Throughout	the	AP	CS	curriculum,	we	will	gradually	be	building	a	larger	program	around
Pokemon,	which	is:	familiar	to	male	and	female	students	from	all	socioeconomic
backgrounds,	available	across	the	digital	divide	as	both	a	card	game	and	a	video	game,	and
has	been	translated	into	10	different	languages	(English,	Spanish,	Portuguese,	Dutch,
French,	German,	Italian,	Korean,	Chinese,	and	Japanese).

Because	the	game	relies	on	statistics,	modulo	operators,	and	the	underlying	32-bit	integer
that	characterizes	any	given	Pokemon,	we	will	be	using	this	theme	to	introduce	students	to
much	of	the	AP	CS	curriculum.	Students	will	be	entering	the	AP	CS	course	with	varying
degrees	of	math	literacy,	and	framing	mathematical	challenges	in	this	familiar	framework	is
helpful	for	avoiding	stereotype	threat	and	math	anxiety.

To	learn	more	about	the	Pokemon	storyline,	game	rules,	underlying	formulae,	and
characters,	visit	http://bulbapedia.bulbagarden.net.

Teacher	Prior	CS	Knowledge
The	“Hello	world!”	program	is	the	classic	first	program	taught	for	many	beginner
programming	classes.	It	demonstrates	the	simplest	way	to	get	output	from	the	program
to	the	user.	The	Java	“Hello	world!”	program	is	chock	full	of	syntax	heavy	constructs	that
would	not	be	particularly	useful	and	unduly	complicated	to	a	first-time	learner	to	Java.
However,	knowing	these	constructs	are	informative	to	the	teacher:
http://www.learnjavaonline.org/en/Hello%2C_World%21.

Teaching	Tips
Tips	For	Pair	Programming:	http://csteachingtips.org/tips-for-pair-programming

Lesson	1.03:	String	&	Console	Output

87

http://bulbapedia.bulbagarden.net
http://www.learnjavaonline.org/en/Hello%2C_World%21
http://csteachingtips.org/tips-for-pair-programming

Tips	For	Lab	Rules:	http://csteachingtips.org/tips-for-lab-rules
Explaining	“public	static	void	main	(String[]	args)”	would	be	overwhelming	for	most
beginning	Java	students.	It’s	important	to	let	the	students	know	that	by	the	end	of	the
course	they	will	know	what	the	line	means	but	for	now	all	they	need	to	know	is	to	start	a
Java	program,	it	needs	this	one	line	of	code.

Misconceptions
Students	learn	by	making	connections	to	prior	knowledge	they	already	know.	Unfortunately,
this	may	backfire	as	in	the	case	of	the	keyword	class.	When	computer	scientists	use	the
word	class,	it	is	automatically	assumed	that	one	is	referring	to	class	in	the	context	of	object
oriented	programming.	However,	for	a	typical	high	school	student,	class	means	something
totally	different:	what	class	am	I	in	now,	what	homework	do	I	have	for	math	class,	or	who	is
the	teacher	of	the	class.	Even	if	the	student	has	prior	programming	knowledge,	they	may	not
be	familiar	with	the	notion	of	a	class	with	respect	to	OOP.

Video
CSE	142,	Hello	World	(29:24–36:09)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=dd78a77d-cd7a-4ff8-
b853-5446801946fb&start=1765

Forum	discussion
Lesson	1.03	String	Console	Output

Lesson	1.03:	String	&	Console	Output

88

http://csteachingtips.org/tips-for-lab-rules
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=dd78a77d-cd7a-4ff8-b853-5446801946fb&start=1765
http://forums.tealsk12.org/c/ap-cs-a-unit-1/1-03-string-console-output

Lesson	1.04	—	Common	Errors	&
Comments

Overview

Objectives	—	Students	will	be	able	to…

Create	simple	programs	with	comments	and	style.
List	and	apply	the	steps	necessary	for	avoiding	syntax	errors.

Assessments	—	Students	will…

Complete	a	worksheet
Develop	a	personal	checklist	for	spotting	syntax	errors

Homework	—	Students	will…

Read	BJP	1.4
Complete	Ch.1	Exercises	6,	7,	9

Materials	&	Prep
Projector	and	computer	(if	you	are	able	to/opt	to	use	Eclipse	with	your	students)
White	paper	and	markers
Classroom	copies	of	WS	1.4
Sample	punched	card	to	pass	around	(available	on	eBay:	http://tinyurl.com/nnthazu)
Pictures:

Punch	cards	(http://tinyurl.com/n9zqd3k)
Readers	(http://tinyurl.com/p34mvmb)
Jaquard	loom	(http://tinyurl.com/n8tmra3)
Bug	(http://tinyurl.com/ljyguuy)

If	you	are	able	to	laminate	student	work,	or	have	plastic	sleeves	available	for	students	that
have	binders,	it	would	be	a	good	idea	to	reinforce/preserve	student	error-correction
algorithms	(see	today’s	Activity).	Students	should	be	referring	to	these	sheets	often	in	the
first	few	months	of	the	course,	so	they	will	get	a	lot	of	wear	&	tear.

Lesson	1.04:	Common	Errors	&	Comments

89

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit1/WS%201.4.docx
http://tinyurl.com/nnthazu
http://tinyurl.com/n9zqd3k
http://tinyurl.com/p34mvmb
http://tinyurl.com/n8tmra3
http://tinyurl.com/ljyguuy

Pacing	Guide

Section Total	Time

Bell-work	and	attendance 5min

Vocabulary	and	history	of	bugs 10min

Error-checking	algorithm 10min

Worksheet 15min

Students	trade	work,	check,	and	turn	in 5min

Procedure
Today’s	lesson	will	be	a	combination	of	drilling	the	parts	of	a	basic	program,	and	conditioning
students	to	check	for	common	errors.	To	hook	your	class,	have	pictures	of	punch	cards	and
punch	card	readers	up	when	students	enter.	If	possible,	have	physical	punch	cards	available
to	pass	around	the	room	for	tactile	learners	as	you	explain	the	origins	of	the	phrase	“bug”
and	“debugging.”

Bell-work	and	Attendance	[5	minutes]

Vocabulary	and	History	of	Bugs	[10	minutes]

Begin	with	a	lecture	about	the	history	of	computing	with	punch	cards	and	the	origins	of
“bugs.”

Before	computers	had	keyboards	or	touchscreens,	all	data	was	input	using	physical
punch	cards	(pass	around	cards).	In	some	systems,	punch	cards	were	used	all	the	way
up	through	the	1980s!

The	holes	in	the	cards	represent	a	“0”	and	the	locations	without	a	hole	store	a	“1.”

Punch	cards	were	originally	designed	for	use	in	a	mechanical	loom	invented	in	1801
(show	pictures	of	loom	&	tapestry	design).

When	something	wasn’t	working	in	the	physical	punch	cards	that	coded	the	program,
users	would	look	for	actual	bugs	in	the	system	(show	bug	picture).

Nowadays,	since	all	of	our	code	is	digitally	stored	as	0s	and	1s,	a	“bug”	means	we
wrote	the	code	incorrectly.	Today	we’re	going	to	create	checklists	of	things	to	look	for	in
our	code	to	make	sure	its	working	correctly—or	“debugging”	our	code.

Lesson	1.04:	Common	Errors	&	Comments

90

Syntax	errors	—	when	you	don’t	follow	the	ordering	rules	of	writing	Java	code,	when
you	misspell	something,	or	leave	out	punctuation.

Analogy:	in	English,	we	say	“the	black	bear.”	In	Spanish,	you’d	say	“el	oso	negro,”
and	in	Italian	“l’orso	nero,”	both	translate	to	“the	bear	black.”	There	are	different
rules	for	how	you	order	your	words	in	different	languages,	and	Java	has	its	own	set
of	language	rules	too.	If	you	write	the	equivalent	of	“the	bear	black”	in	Java,	Java
won’t	understand	it,	and	you’ll	get	an	error	message.	(Have	students	give	you	an
example.)

You	can	also	create	confusion	by	writing/saying	“the	balck	bear”	(a	misspelling),	or
“the!	black,	bear?”	(incorrect	punctuation)

Logic	errors	—	sometimes	you	might	write	code	that	has	the	right	syntax,	but	doesn’t
do	what	you	meant	for	it	to	do.	In	this	case,	the	program	will	run,	but	you	won’t	get	the
right	output.	An	example	of	this	would	be	if	you	wrote	a	print	statement	instead	of	a
println.

Runtime	errors	—	these	errors	can	happen	if	you	give	Java	a	code	that	has	no
solution,	or	accidentally	causes	the	computer	to	calculate	an	infinite	loop.

In	science	fiction,	this	is	usually	the	way	to	shut	down	the	evil	computer	that	has
come	alive	to	take	over	humanity.	Examples	could	be	asking	Java	to	calculate	pi	to
the	last	digit,	or	dividing	by	zero.
If	you	want	to	share	examples	with	your	class,	navigate	to	this	cued	Star	Trek	video
clip:	(https://www.youtube.com/watch?
v=5VZRdAUbgCk&feature=youtu.be&t=1m9s),	or	invite	students	to	scan	through
this	list:	(http://tvtropes.org/pmwiki/pmwiki.php/Main/LogicBomb).

Error-Checking	Algorithm	[10	minutes]

1.	 Have	students	distribute	paper	and	markers	while	you	explain	that	students	are	going	to
create	a	personal	algorithm	(or	specific	list	of	steps)	that	they	will	follow	each	time	they
write	code.	A	sample	algorithm	might	look	something	like	this:

STEP	1:	Check	all	code	for	spelling	errors.
STEP	2:	Check	all	code	for	punctuation	errors	(curly	brackets,	brackets,
parentheses,	semicolons).
STEP	3:	Check	all	code	for	syntax	errors.
…

2.	 Encourage	students	to	write	the	algorithm	as	a	checklist,	decision	tree,	or	mindmap.
Explicitly	contrast	the	flexibility	of	the	human	brain	when	compared	to	computers.

Lesson	1.04:	Common	Errors	&	Comments

91

https://www.youtube.com/watch?v=5VZRdAUbgCk&feature=youtu.be&t=1m9s
http://tvtropes.org/pmwiki/pmwiki.php/Main/LogicBomb

Encourage	creativity	here—some	students	may	color	code	their	list,	or	take	the
assignment	home	to	work	on	lettering,	illustration	etc.	What	may	feel	like	wasted	time	is
actually	a	spatial	and	tactile	activity	that	helps	students	reinforce	and	memorize	the
steps	needed	to	check	code.	The	more	ownership	students	take	of	this	list,	the	more
likely	they	are	to	use	it	over	the	next	few	months,	which	will	make	error-checking
habitual.

3.	 If	you	do	not	have	classroom	copies	of	the	textbook,	list	the	following	errors	on	the
board	as	required	steps	for	students	to	have	on	their	code-checking	“algorithm.”	If	you
feel	that	you	have	enough	time,	have	students	put	these	on	the	board.

File	name	matches	class	name
All	code	is	spelled	correctly
All	code	is	capitalized	correctly
All	statements	end	in	a	semicolon
Keywords	are	included
Strings	are	enclosed	in	“quotation	marks”
There	are	no	extra	punctuation	marks
All	header	open-braces	are	paired	with	closed-braces

Worksheet	[20	minutes]

1.	 For	5	minutes	go	over	documentation	and	proper	commenting.	Also	go	over	identifiers,
camelCase,	and	do	a	short	introduction	to	style.	Style	will	be	covered	in	1.08,	but	it’s
important	that	they	are	introduced	to	it	here.

2.	 Students	have	15	minutes	to	complete	WS	1.4.	As	they	solve	each	problem,	students
should	apply	their	personal	proofreading	algorithm	to	help	check	their	solution	for
correctness.

Students	trade	work,	check,	and	turn	in	[5	minutes]

At	the	end	of	class,	have	students	trade	their	worksheets	to	check	each	other’s	answers
before	turning	in	the	worksheet.

Accommodation	and	Differentiation
While	all	students	should	write	their	OWN	algorithm,	you	should	encourage	students	to	work
in	pairs	or	small	groups	so	they	can	share	ideas	and	help	each	other	organize	their
thoughts.	This	is	particularly	important	in	ELL	classrooms,	where	emergent	English	speakers

Lesson	1.04:	Common	Errors	&	Comments

92

can	pair	with	advanced	English	learners.	If	some	students	want	to	do	this	project	all	on	their
own,	let	them.

If	you	have	students	who	are	speeding	through	this	lesson,	you	should	encourage	them	to:

Create	a	mnemonic	or	acrostic	to	remember	all	the	steps	for	checking	syntax	errors
Make	a	poster	for	the	classroom	illustrating	the	mnemonic	or	acrostic
Help	another	student	with	the	worksheet	(explain,	not	solve-for-them)

About	Error	Checking	in	Eclipse
If	you	are	able	to	use	Eclipse	with	your	students	during	this	class	period,	you	may	opt	to
show	your	students	how	to	interpret	the	error	indicator.

If	you	do	give	your	students	the	Eclipse	tools	at	this	time,	beware	that	your	students	will
probably	copy	and	paste	between	Eclipse	and	Practice-It.	On	some	systems,	this	may
translate	the	span	character	into	a	Unicode	space	character.	This	will	cause	code	that
worked	in	Eclipse	to	produce	errors	in	Practice-It	or	vice	versa.	To	avoid	student	frustration,
be	sure	to	demonstrate	how	to	correct	copied/pasted	code	before	submitting	to	Practice-It.

Teacher	Prior	CS	Knowledge
Finding	errors	in	both	your	own	code	and	in	students’	code	takes	practice.	It	easy	for
students	to	get	frustrated	because	their	code	does	not	compile	or	produce	the	correct
output.	They	will	inevitable	come	to	you	for	help.	As	you	become	more	experienced,	you	will
see	the	same	types	of	errors	being	repeated	by	multiple	students.	You	will	begin	to
recognize	what	type	of	student	mistakes	correspond	to	the	Java	error	message.

Teaching	Tips
Tips	for	Encouraging	Help	Seeking:	http://csteachingtips.org/tips-for-encouraging-help-
seeking

Part	of	the	accommodations	is	to	“encourage	students	to	work	in	pairs	or	small	groups”.
While	it	is	convenient	to	group	students	by	proximity,	this	does	not	always	lead	to
groups	where	students	are	helping	other	students.	As	you	get	to	your	students’	abilities
and	personalities,	you	can	deliberately	create	groups	to	help	foster	collaboration.	Here’s
a	few	ways	you	can	create	groups:

Lesson	1.04:	Common	Errors	&	Comments

93

http://csteachingtips.org/tips-for-encouraging-help-seeking

By	strength	with	the	stronger	students	with	other	stronger	students,	weaker
students	with	weaker	students

Mixed	groups	with	different	levels	in	each	group,	ideally	not	all	the	strong	or	weak
students	in	the	same	group.

Random	where	you	have	a	program	that	generates	random	groups	where	you	keep
generating	so	the	two	students	that	need	to	be	separated	are	not	in	the	same
group.

Misconceptions
When	troubleshooting	student	errors,	it’s	important	to	distinguish	between	syntax	errors
which	is	procedural	in	nature	and	errors	in	the	algorithm	which	requires	correction	in	the
logic	of	the	solution.	In	the	beginning	where	the	problems	are	relatively	easily	to	solve,
students	will	have	mostly	syntax	errors	like	misplaced/missing	semi-colons.	It	is	important	to
not	always	jump	to	finding	the	syntax	for	the	student	but	to	have	students	practice	good
coding	style	with	proper	indenting.	Students	need	to	know	from	the	beginning	that	it	is
common	if	not	expected	that	syntax	errors	are	just	part	of	the	process	of	writing	code	and	it
does	not	have	to	be	prefect	the	first	time.

Video
CSE	142,	Common	Errors	(36:10–44:11)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=dd78a77d-cd7a-4ff8-
b853-5446801946fb&start=2170

Forum	discussion
Lesson	1.04	Common	Errors	&	Comments	(TEALS	Discourse	account	required)

Lesson	1.04:	Common	Errors	&	Comments

94

https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=dd78a77d-cd7a-4ff8-b853-5446801946fb&start=2170
http://forums.tealsk12.org/c/ap-cs-a-unit-1/1-04-common-errors-comments

Lesson	1.05	—	Static	Methods	&	Method
Calls	(1/2)

Overview

Objectives	—	Students	will	be	able	to…

Use	procedural	decomposition	to	plan	complex	programs	using	structure	diagrams.
Manage	complexity	by	using	method	calls

Assessments	—	Students	will…

Complete	Practice-It	problems

Homework	—	Students	will…

Read	BJP	1.5
Complete	Ch.1	Exercises	11,	12,	14,	16

Materials	&	Prep
Projector	and	computer	(if	you	are	able	to/opt	to	use	Eclipse	with	your	students)
Whiteboard	and	marker
Overly	complicated	diagram	(http://tinyurl.com/y8a7cry)

Pacing	Guide

Section Total	Time

Bell-work	and	attendance 5min

Introduction	and	note-taking 15min

Practice-It	questions 25min

Students	trade	work,	check,	and	turn	in 5min

Lesson	1.05:	Static	Methods	&	Method	Calls	(1/2)

95

http://tinyurl.com/y8a7cry

Procedure
This	class	introduces	many	new,	intertwined	concepts	in	one	class	period.	These	concepts
will	be	re-taught	in	the	next	class,	but	you	should	be	aware	that	your	students	have	a	lot	of
information	to	absorb	in	a	short	amount	of	time.	This	lesson	will	be	a	good	litmus	test—if
students	have	been	doing	their	reading	and	homework,	the	class	should	move	along
smoothly.	If	students	are	not	completing	the	readings,	you	will	probably	only	get	through
~50%	of	the	material.	If	needed,	use	this	opportunity	to	convince	students	of	the	pace	and
commitment	level	required	for	the	class.

Bell-work	and	Attendance	[5	minutes]

Introduction	and	Note-Taking	[15	minutes]

1.	 Have	the	complicated	algorithm	up	on	the	board,	or	printed	out	for	students	to	pass
around.	If	you	have	any	confusing	furniture	assembly	manuals,	or	overly	complicated
directions,	bring	those	to	pass	around	too.

Start	class	off	with	a	whole	group	discussion	about	why	the	instructions	or	diagrams	are
confusing,	and	ask	students	what	strategies	could	be	used	to	make	them	easier	to
understand.	The	diagram	listed	in	materials	is	an	actual	slide	from	the	Pentagon,	and
illustrates	how	too	much	complexity	can	cause	all	meaning	to	be	lost.	Guide	the
conversation	towards	decomposition	to	begin	your	lecture:

Decomposition:	dividing	a	problem	into	smaller,	more	manageable	pieces.
Procedural	decomposition:	dividing	a	whole	program	into	a	series	of	individual
steps	or	actions	to	program	1	at	a	time.
Structure	diagram:	a	way	of	organizing	your	approach	to	building	a	larger
program.	Ask	students	to	help	you	draw	a	structure	diagram	for	a	program	with	the
output	shown	below:

Lesson	1.05:	Static	Methods	&	Method	Calls	(1/2)

96

OUTPUT:																															STRUCTURE	DIAGRAM:

+-------+																															Stacked	Blocks

|							|																																					.'.

|							|																																			.'			'.

+-------+																																	.'							'.

																																								.'											'.

+-------+																													.'															'.

|							|																					Draw	A	Box										Insert	a	Blank	Line

|							|																						.'					'.

+-------+																				.'									`.

																											.'													`.

+-------+																.'																	`.

|							|														.'																					`.

|							|						Draw	a	Horizontal	Line						Draw	2	Vertical	Lines

+-------+

2.	 Have	students	take	3	minutes	to	write	the	DrawBoxes	program	the	long	way:

public	class	DrawBoxes	{

				public	static	void	main	(String[]	args)	{

								System.out.println("+-------+");

								System.out.println("|							|");

								…

3.	 Point	out	to	students	that	anything	they	would	cut	and	paste	to	save	time	on	creating
would	make	a	good	unit	to	turn	into	a	“static	method”

Static	method	—	a	block	of	Java	statements	that	is	given	its	own	name	(ask	students
to	point	to	a	Java	statement)

Has	the	same	structure	we’re	familiar	with	from	the	main	method	we	already	wrote,
but	we	give	it	a	different	name	than	“main”.

4.	 Ask	students	what	simple	unit	we	should	build	into	a	static	method	(have	them	refer	to
the	structure	diagram),	and	have	them	suggest	a	name	for	the	method.

5.	 Rewrite	the	method	as	a	class,	then	show	students	how	to	write	methods	in	main	that
call	the	new	static	method.	Make	sure	that	students	insert	the	println	statements
between	each	method	call.	It	should	look	something	like	this:

Lesson	1.05:	Static	Methods	&	Method	Calls	(1/2)

97

public	class	DrawBoxes3	{

				public	static	void	drawbox()	{

								System.out.println("+-------+");

								System.out.println("|							|");

								System.out.println("|							|");

								System.out.println("+-------+");

				}

				public	static	void	main(String	[]	args)	{

								drawBox();

								System.out.println();

								drawBox();

								System.out.println();

								drawBox();

				}

}

6.	 Call	on	a	student	to	come	to	the	board	and	physically	trace	the	flow	of	control	with	the
marker.	Start	them	off	by	pointing	out	that	Java	always	starts	with	the	main	method.

If	the	student	seems	nervous,	encourage	the	rest	of	the	class	to	call	out	directions	to	the
student.	Make	sure	students	are	drawing	the	flow	of	control	on	their	own	notes	as	well.

Practice-It	questions	[25	minutes]

1.	 Have	students	complete	the	following	Practice-It	questions:
i.	 Tricky
ii.	 Strange
iii.	 Confusing
iv.	 Lots-of-errors

If	you	do	not	have	access	to	computers	in	your	classroom,	copy	the	Practice-it	questions	to
a	worksheet	and	have	students	complete	the	practice	problems	by	writing	out	the	answers
and	using	their	error-checking	algorithm	sheets.

Some	students	will	jump	right	into	this	activity,	but	others	will	need	additional	assistance
from	you.

At	this	point	in	the	school	year,	we	suggest	that	you	insist	on	structure	diagrams	with	each
program.	Structure	diagrams	encourage	algorithmic	thinking	and	the	creation	of	efficient
solutions;	both	of	which	are	vital	computational	thinking	skills.

If	need	be,	work	on	“Tricky”	as	a	whole	group,	so	you	can	model	the	correct	steps	to
approaching	a	problem.	If	your	class	decides	on	an	algorithm	for	“predict	the	output”	type
questions,	have	a	student	make	that	algorithm	into	a	poster	for	the	whole	class	to	refer	to.

Lesson	1.05:	Static	Methods	&	Method	Calls	(1/2)

98

Students	trade	work,	check,	and	hand	in	[5	minutes]

Have	students	trade	work	and	check	each	other’s	responses	on	Practice-It	before
submitting.

Accommodation	and	Differentiation
In	ELL	classrooms,	this	lesson	should	be	delivered	over	the	course	of	2	days.	Extra	time
should	be	spent	drilling	static	methods,	methods	that	call	other	methods,	and	flow	of	control.
Try	adapting	some	of	the	examples	from	the	book	to	include	students’	native	language	so
they	can	focus	on	structuring	code	instead	of	translating	language.	One	easy	way	to
introduce	familiar,	repetitive	content	would	be	to	have	students	output	the	lyrics	to	a	song
with	a	refrain.	For	a	physical	activity	to	demonstrate	flow-of-control,	check	out	lesson	plan
1.6.

If	you	have	students	who	are	speeding	through	this	lesson,	you	should	encourage	them	to:

Complete	the	remaining	Strange	2,	Strange	3,	Complicated	2	and	Complicated	3
Practice-It	questions
Have	the	student	write	a	sample	test	question	with	output	that	can	be	written	using
method	calls.	Be	sure	they	include	the	answer	key	with	the	sample	question!

Teacher	Prior	CS	Knowledge
Java	has	both	static	and	non-static	methods.	Static	methods	allow	the	programmer	to	call
the	method	without	creating	an	object	from	the	class.	Non-static	methods	covered	in	the	2
half	of	the	course	requires	an	object	be	created	from	the	class	before	calling	the	method.
Because	“Building	Java	Programs”	introduces	functions	before	objects,	methods	in	early
lesson	plans	are	static.	For	a	description	of	the	difference	between	static	and	non-static
methods	see	http://beginnersbook.com/2013/05/static-vs-non-static-methods/.

Teaching	Tips
One	of	the	big	fundamental	concepts	of	problem	solving	in	computer	science	is	the
concept	abstraction.	This	lesson	has	a	number	of	new	syntax	constructs	for	students	to
create	methods	and	it	is	important	to	give	students	the	big	picture	idea	of	factoring	code
and	reducing	redundancy.

nd

Lesson	1.05:	Static	Methods	&	Method	Calls	(1/2)

99

http://beginnersbook.com/2013/05/static-vs-non-static-methods/

The	practice-it	problems	have	students	tracing	code	where	methods	call	other	methods.
Giving	students	a	way	of	tracing	code	like	using	a	table	to	keep	track	of	the	method
calls.	If	you	are	using	a	black/white	board,	we	recommend	crossing	out	the	method	call
when	it	completes	instead	of	erasing	the	name	so	the	student	can	review	the	entire	flow
of	control	from	beginning	to	end	after	the	exercise	is	complete.	Another	technique	that
can	be	introduced	now	that	can	be	used	later	when	the	flow	of	control	gets	more
complex	is	memory	diagrams:	https://www.youtube.com/watch?v=t-
_TeH0dSZs&feature=youtu.be&list=PL0g5FWk3FEqjmrq4ystAvlRyenEF7lUwa

Misconceptions
When	declaring	a	method,	students	will	sometimes	incorrectly	add	a	semicolon	to	the
method	header,	as	in		public	void	foo();	.	Students	have	a	misconception	that	all
statements	in	Java	end	in	a	semicolon.	They	need	to	know	the	distinction	between
statements	that	do	end	in	semicolon	and	statements	that	begin	blocks	with	curly
brackets.	The	addition	of	the	semicolon	to	the	message	header	could	also	be	students
incorrectly	pattern	matching	the	method	declaration	with	the	method	call	where	there	is
a	semicolon:		foo();		This	overgeneralization	could	lead	to	semi-colon	being	incorrectly
placed.

For	methods	without	parameters,	students	will	sometimes	omit	the	parenthesis		()	.	To
clarify	the	difference	between	variables	and	methods,	always	use	parenthesis	when
referring	to	methods.	This	will	reinforce	the	notion	that	methods	in	Java	require
parenthesis,	even	for	methods	with	zero	parameters.

Videos
BJP	1-3,	Programming	with	Methods
http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c1-3

CSE	142,	Static	Methods	(44:12-49:21)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=dd78a77d-cd7a-4ff8-
b853-5446801946fb&start=2652

CSE	142,	Procedural	Decomposition	(20:10–29:35)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=b5df64f2-e42f-4943-
bab6-29eca0ab8f00&start=1211

CSE	142,	Eliminating	Redundancy	(29:36–35:49)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=b5df64f2-e42f-4943-
bab6-29eca0ab8f00&start=1775

Lesson	1.05:	Static	Methods	&	Method	Calls	(1/2)

100

https://www.youtube.com/watch?v=t-_TeH0dSZs&feature=youtu.be&list=PL0g5FWk3FEqjmrq4ystAvlRyenEF7lUwa
http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c1-3
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=dd78a77d-cd7a-4ff8-b853-5446801946fb&start=2652
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=b5df64f2-e42f-4943-bab6-29eca0ab8f00&start=1211
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=b5df64f2-e42f-4943-bab6-29eca0ab8f00&start=1775

Forum	discussion
Lesson	1.05	Static	Methods	and	Method	Calls	(TEALS	Discourse	account	required)

Lesson	1.05:	Static	Methods	&	Method	Calls	(1/2)

101

http://forums.tealsk12.org/c/ap-cs-a-unit-1/1-05-static-methods-method-calls

Lesson	1.06	—	Static	Methods	&	Method
Calls	(2/2)

Overview

Objectives	—	Students	will	be	able	to…

Use	structure	diagrams	to	plan	complex	programs.
Manage	complexity	by	using	method	calls.

Assessments	—	Students	will…

Complete	Practice-It	problems
Write	a	structured	Pikachu	program

Homework	—	Students	will…

Outline	Ch.1
Complete	Programming	Project	#1*	&	#3	(must	include	a	structure	diagram	for	each)

Materials	&	Prep
Projector	and	computer	(if	you	are	able	to/opt	to	use	Eclipse	with	your	students)
Whiteboard	and	markers
Rosters	for	class	teams
Ball	(preferably	a	large	inflatable	ball	or	kickball)

The	teams	for	today’s	competition	should	be	your	best	guess	at	tiered	grouping	(these
groups	will	probably	change	as	the	year	goes	on	and	you	learn	more	about	your	students).
Depending	on	the	size	of	your	class,	you	should	aim	for	4	teams	or	teams	of	4	people.

Pacing	Guide

Lesson	1.06:	Static	Methods	&	Method	Calls	(2/2)

102

Section Total	Time

Bell-work	and	attendance 5min

Introduction	&	challenge 10min

Review/re-teach 5–15min

Pikachu	challenge 10–15min

Students	trade	work,	check,	and	turn	in 5min

Procedure
Today’s	class	re-teaches	the	many	concepts	introduced	during	yesterday’s	lesson	on
decomposition,	static	methods,	and	methods	that	call	other	methods	and	goes	over	control
flow.	Since	different	students	will	progress	at	different	rates,	we’ll	begin	this	lesson	with	an
assessment	(in	the	form	of	a	competition)	to	determine	how	much	re-teaching	you	need	to
do.	The	competition	is	really	group	work	in	disguise,	and	will	encourage	students	to	teach
and	help	each	other	while	writing	the	sample	program.

Bell-work	and	Attendance	[5	minutes]

Introduction	and	Challenge	[10	minutes]

1.	 As	your	hook,	grandly	announce	a	class	competition	between	teams	and	announce	the
prize	for	the	winning	team	(this	might	be	TEALS	swag,	bonus	classroom	participation
points,	or	additional	raffle	entries	in	the	year-end	TEALS	giveaway).

2.	 Announce	class	teams	and	rearrange	students	as	needed.

3.	 Announce	the	10-minute	time	limit,	set	the	timer,	then	reveal	the	challenge	on	printed
handouts	or	on	the	projector	with	great	fanfare.	CHALLENGE:	Write	a	Java	program
called	StarFigures	that	generates	the	following	output.	You	MUST	include	a	structure
diagram	or	your	answer	will	be	disqualified.	A	correct	answer	will	use	static	methods	to
show	structure	and	eliminate	redundancy	in	your	solution.

Lesson	1.06:	Static	Methods	&	Method	Calls	(2/2)

103

		*	*

			*

		*	*

		*	*

			*

		*	*

			*

			*

			*

		*	*

			*

		*	*

4.	 Give	students	10	minutes	to	complete	the	challenge,	and	take	note	of	which	team
finishes	first.	If	students	are	struggling,	you	may	extend	the	time,	or	offer	universal
helpful	tips.	The	team	that	has	the	correct	answer	first	wins	the	prize.

Review/Teach	[5-15	minutes]

Review	student	answers	together	as	a	whole	group,	revisiting	concepts	taught	earlier	in	the
week	as	mistakes	come	up.	Whenever	possible,	have	students	volunteer	the	correct
procedure,	approach,	or	code.	Encourage	students	to	take	notes	during	this	process	so	they
can	review	topics	over	the	weekend.

Review/Teach	OPTIONAL	INSTRUCTION

If	students	are	having	trouble	understanding	the	flow	of	control,	you	can	do	this	physical
activity	with	them	(bonus:	this	activity	can	be	built	on	later	in	the	year	when	discussing	return
values).

1.	 Write	or	project	the	following	code	as	an	example	(have	students	help	you	with	the
headers	if	you	are	writing):

Lesson	1.06:	Static	Methods	&	Method	Calls	(2/2)

104

	public	class	SquarePants	{

					public	static	void	spongebob()	{

									System.out.println("Well,	it	might	be	stupid");

					}

					public	static	void	patrick()	{

									System.out.print("but	it's	also");

					}

					public	static	void	squidward()	{

									System.out.println("dumb.");

					}

					public	static	void	main	(String[]	args){

									spongebob();

									patrick();

									squidward();

					}

	}

2.	 Assign	a	student	to	each	of	the	methods:		main	,		spongebob	,		patrick	,	and		squidward	,
and	have	them	come	to	the	front	of	the	classroom.	Have	another	student	act	as	Java;
tell	them	they	are	to	write	the	output	on	the	board	(or	type	it	if	you’re	using	a
computer/projector	system).	From	here	on	out	you	should	address	students	by	their
component	names	(so	always	call	student	acting	as	method		patrick		as	Patrick,	and
so	on).

3.	 Narrate	the	flow	of	control	as	you	toss	the	ball	to		main	.	Have		main		pass	the	ball	to
	spongebob		(and	make	sure	Java	“outputs”		Well,	it	might	be	stupid		on	the
Whiteboard	before	control	passes	back	to		Main).

Discuss	with	the	class	how	Java	knows	to	return	to	the	next	call	in		main		(the
close-bracket),	and	have	the	class	direct	control	to		patrick	,	then		main	,	then
	squidward		as	Java	writes	the	output	on	the	board.
Pay	special	attention	to	the	print	statement	in	the		squidward		method,	and	if	kids
miss	it,	make	some	sort	of	“error”	noise.	Bonus:	encourage	the	students	to	make
the	error	noise	for	you.

Pikachu	Challenge	[10-15	minutes]

On	the	board	or	projector,	have	the	students	finish	the	class	with	the	Pikachu	challenge:

Write	a	program	called	PikachuChatter	that	outputs	the	following:

Lesson	1.06:	Static	Methods	&	Method	Calls	(2/2)

105

Pika	pika	pika	chu	pika	chu	peeeee	ka	pika	chu!

	(__/)

	(o^.^)

z(_(")(")

Pika?	Pika	pika	pika	chu	peeeee	ka	chu!

	(__/)

	(o^.^)

z(_(")(")

You	can	reuse	the	code	that	you	wrote	earlier	this	week.
Your	program	should	use	static	methods	and	method	calls.
You	should	include	a	comment	at	the	start	of	the	program	that	explains	what	the	code
does	(you	might	want	to	use	this	code	later	in	the	year	when	we	build	a	larger	Pokémon
program).

Students	trade	work,	check,	and	turn	in	[5	minutes]

At	the	end	of	class,	have	students	review	one	another’s	Pikachu	challenge	codes	before
submitting.

Accommodation	and	Differentiation
If	you	have	students	who	are	speeding	through	this	lesson,	you	should	encourage	them	to:

Complete	the	remaining	Strange	2,	Strange	3,	Complicated	2	and	Complicated	3
Practice-It	questions.

Have	the	student	write	a	sample	test	question	with	output	that	can	be	written	using
method	calls.	Be	sure	they	include	the	answer	key	with	the	sample	question!

If	you	have	the	good	fortune	of	not	needing	to	re-teach	any	concepts,	you	can
magnanimously	give	students	extra	time	to	start	on	the	homework	programming	project	#1.
If	you	are	doing	a	lot	of	re-teaching	during	this	class,	and	you	feel	that	students	need	the
emotional	reward,	you	may	drop	programming	project	#1.

Video
BJP	1–4,	Drawing	Complex	Figures	with	Static	Methods
http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c1-4

Lesson	1.06:	Static	Methods	&	Method	Calls	(2/2)

106

http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c1-4

Forum	discussion
Lesson	1.06	Static	Methods	and	Method	Calls	(TEALS	Discourse	account	required)

Lesson	1.06:	Static	Methods	&	Method	Calls	(2/2)

107

http://forums.tealsk12.org/c/ap-cs-a-unit-1/1-05-static-methods-method-calls

Lesson	1.07	—	Programming	Project

Overview

Objectives	—	Students	will	be	able	to…

Construct	a	program	containing	method	calls	and	static	methods.

Assessments	—	Students	will…

Submit	a	complete,	functional	program	by	the	end	of	class

Homework	—	Students	will…

Check	class	notes	for	completion,	adding	daily	summaries	if	needed.
Students	may	use	the	book	to	supplement	their	notes	if	needed.
All	students	must	turn	in	notes	for	each	day	of	class	(even	if	they	were	absent).

Materials	&	Prep
Projector	and	computer	(if	you	are	able	to/opt	to	use	Eclipse	with	your	students)
Student	self-help	system	such	as	C2B4	(“see	two	before	seeing	me”)	or	student
pairing

Make	sure	you	are	set	up	to	grade	student	notebooks	today	while	the	students	work	on	the
project.	If	possible,	you	should	only	collect	3–5	notebooks	at	a	time	so	students	have	their
notebooks	available	to	reference	during	programming	time.

Pacing	Guide

Lesson	1.07:	Programming	Project

108

Section Total	Time

Bell-work	and	attendance 5min

Introduction	&	classroom	procedure	review 10min

Programming	project	#2,	Chapter	1 15min

Programming	project	#5,	Chapter	1 15min

Students	trade	work,	check,	and	turn	in 5min

Procedure
The	second	week	part	of	this	unit	will	be	spent	on	reinforcing	concepts	and	applying	the
tools,	procedures,	and	code	that	were	introduced	last	week.	While	these	classes	require	little
prep	before	class,	you	should	set	up	a	system	that	will	allow	students	to	help	themselves
and	each	other	so	you	aren’t	running	around	the	computer	lab	the	whole	time.

If	your	computer	time	requires	you	to	move	to	another	room	or	to	change	seating,	you
should	teach	and/or	review	those	procedures	before	introducing	the	lab	material.	If	you
expect	students	to	submit	assignments	electronically,	you	should	also	model	and	review
those	procedures	before	students	begin	work.

Bell-work	and	Attendance	[5	minutes]

Introduction	and	Classroom	Procedure	Review	[10	minutes]

1.	 Introduce	the	program	assignment,	taking	a	moment	to	talk	strategy	with	your	class.

ASSIGNMENT:	Sometimes	we	write	similar	letters	to	different	people.	For	example,	you
might	write	to	your	parents	to	tell	them	about	your	classes	and	your	friends	and	to	ask
for	money.	You	might	write	to	a	friend	about	your	love	life,	your	classes,	and	your
hobbies,	and	you	might	write	to	your	brother	about	your	hobbies	and	your	friends	and	to
ask	for	money.

Write	a	program	that	prints	similar	letters	such	as	these	to	three	people	of	your	choice.
Each	letter	should	have	at	least	one	paragraph	in	common	with	each	of	the	other
letters.	Your	main	program	should	have	three	method	calls,	one	for	each	of	the	people
to	whom	you	are	writing.

TIPS:	Try	to	isolate	repeated	tasks	into	methods.	Include	comments	in	with	your	code
so	others	can	easily	understand	what	the	code	is	supposed	to	do.

Lesson	1.07:	Programming	Project

109

2.	 Ask	your	class	for	suggestions	as	to	how	to	tackle	this	programming	problem.	Students
should	suggest	drawing	a	structural	diagram,	building	the	program	one	method	at	a	time
(iterative	development),	and	following	the	correction	steps	on	their	personal	algorithms
(debugging).

Programming	Project	#2,	Chapter	1	[15	minutes]

Get	students	started	on	Programming	Project	#2	in	Chapter	1	of	the	textbook.	Offer	students
help	after	they	have	tried	to	answer	the	questions	themselves:

1.	 Have	the	checked	the	book	for	examples?
2.	 Have	they	asked	a	friend	(or	two)	for	help?

If	students	seem	to	be	getting	stuck	on	the	same	segment	of	code,	offer	a	hint	or	tip	on	the
board	(silently,	without	disrupting	student	flow).

If	the	entire	class	is	stuck,	return	to	whole	group	and	work	through	the	programming
challenge	together	as	a	class,	having	students	offer	an	increasing	proportion	of	the	answers
as	you	move	along.

Programming	Project	#5,	Chapter	1	[15	minutes]

Introduce	Programming	Project	#5	in	Chapter	1	of	the	textbook.	If	your	class	finished	the	first
assignment	quickly	and	easily,	offer	little	to	no	guidance	on	this	project.

Students	trade	work,	check,	and	turn	in	[5	minutes]

At	the	end	of	class,	have	students	briefly	look	at	each	other’s	projects	and	review	their	work
before	they	submit.

Accommodation	and	Differentiation
If	you	have	students	who	are	speeding	through	this	lesson,	you	should	encourage	them	to
tackle	programming	project	#4	in	the	text	book.

Forum	discussion
Lesson	1.07	Programming	Project	(TEALS	Discourse	account	required)

Lesson	1.07:	Programming	Project

110

http://forums.tealsk12.org/c/ap-cs-a-unit-1/1-07-programming-project

Lesson	1.07:	Programming	Project

111

Lesson	1.08	—	Finding	&	Fixing	Errors

Overview

Objectives	—	Students	will	be	able	to…

Find	and	fix	errors	and	style	in	their	returned	homework	assignments.
Correct	their	code

Assessments	—	Students	will…

Re-submit	all	homework	assignments	with	corrected	answers.

Homework	—	Students	will…

Study	for	the	test	by:
Reviewing	all	the	blue	pages	at	the	end	of	Chapter	1
Re-reading	sections	as	needed

Submit	5	questions	for	review	in	class	tomorrow	using	electronic	survey

Materials	&	Prep
Any	student	homework	assignments	that	you	have	not	yet	returned
Student	self-help	system	(such	as	C2B4	or	student	pairing)
Electronic	survey	for	student	review	requests

When	you	grade	homework	assignments,	it	will	be	most	useful	to	these	lessons	if	you	only
mark	an	answer	incorrect	or	correct.	ELL	classrooms	are	the	exception	to	this	rule—
students	will	be	having	a	hard	enough	time	just	reading	the	material;	you	can	speed	along
their	processing	by	correcting	one	example,	then	having	them	look	for	similar	errors	with	that
example.

The	homework	tonight	asks	students	to	submit	5	questions	for	review.	Create	an	electronic
survey	for	students	to	complete	with	6	text	fields,	one	for	name,	and	5	for	questions	they
have	about	Ch.	1	content.	Set	a	time-deadline	(e.g.	10pm)	by	which	time	students	must
have	submitted	5	questions	from	Ch.1	that	they	would	like	to	see	reviewed	in	tomorrow’s
class.	If	students	do	not	have	questions,	stipulate	that	they	still	have	to	submit	something	to
receive	credit,	even	if	it	is	only	questions	they	think	other	students	may	have.

Lesson	1.08:	Finding	&	Fixing	Errors

112

Pacing	Guide

Section Total	Time

Bell-work	and	attendance 5min

Introduction	and	homework	distribution 5min

Lecture	on	style 10min

Student	work 25min

Students	trade	work,	check,	and	submit 10min

Procedure
Today	we	continue	reinforcing	concepts	and	applying	the	tools,	procedures,	and	code	that
were	introduced	last	week.	Students	will	have	the	opportunity	to	correct	any	incorrect
homework	assignments.	If	students	did	not	have	time	to	finish	the	programming	projects
from	yesterday,	you	may	allow	them	time	to	work	on	those	projects	today.

This	is	a	good	day	to	loosen	up	the	vibe	in	the	classroom	a	bit.	Try	playing	music	softly	in
the	background	to	encourage	students	to	relax	and	focus	on	spotting	errors.	Try	to	avoid
loud,	rhythmic	music.	Reward	your	class	for	good	grades/behavior	by	allowing	them	to
select	music	from	a	pre-selected	group	of	Pandora	stations	(or	the	like).

Bell-work	and	Attendance	[5	minutes]

Introduction	and	Homework	Distribution	[5	minutes]

1.	 Return	student	homework	packets,	or	have	students	place	their	returned	homeworks	in
a	pile	on	their	desk.

2.	 Explain	to	students	that	they	have	the	opportunity	to	get	full	credit	on	their	homework
grades	by	correcting	them	now,	in	class.	Ask	students	for	suggestions/ideas	on	how	to
make	sure	they	don’t	miss	any	errors.	(By	now	students	should	be	used	to	relying	on
their	error	checklist/algorithm.)

Lecture	on	style	[10	minutes]

Add	the	caveat	that	they	must	correct	their	style	to	receive	that	credit.	Explain	that	style	is
necessary	to	improve	readability	and	that	you	lose	points	for	having	poor	style.

Although	it	was	already	touched	on	previously,	tell	them	that	identifiers	must	be	properly

Lesson	1.08:	Finding	&	Fixing	Errors

113

capitalized.
Commenting	must	be	properly	used	throughout.
Lines	must	be	no	longer	than	100	preferably	80	lines.
There	should	be	no	redundant	code.
There	are	links	to	the	full	style	guide	we	recommend	on	the	slides.

Student	Work	[25	minutes]

Have	students	work	individually	to	correct	their	homework	grades.

Offer	time	checks	for	students	so	they	stay	on	task.
If	students	have	not	finished	their	programming	project	from	yesterday’s	class,	allow
them	to	do	so	today.

Students	trade	work,	check,	and	turn	in	[10	minutes]

At	the	end	of	class,	have	students	trade	their	homework	assignments	to	evaluate	each
other’s	corrections	before	submission.

Accommodation	and	Differentiation
If	you	have	students	who	are	speeding	through	this	lesson,	you	should	encourage	them	to
tackle	programming	project	5	&	7	in	the	text	book.

If	you	were	unable	to	finish	grading	student	notebooks	yesterday,	finish	them	today	while
students	are	working.	Return	notebooks	by	the	end	of	class	so	students	may	use	them	to
study	for	the	exam.

Forum	discussion
Lesson	1.08	Finding	and	Fixing	Errors	(TEALS	Discourse	account	required)

Lesson	1.08:	Finding	&	Fixing	Errors

114

http://forums.tealsk12.org/c/ap-cs-a-unit-1/1-08-finding-fixing-errors

Lesson	1.09	—	Review

Overview

Objectives	—	Students	will	be	able	to…

Identify	weaknesses	in	their	Unit	1	knowledge.

Assessments	—	Students	will…

Create	a	personalized	list	of	review	topics	to	guide	tonight’s	study	session.

Homework	—	Students	will…

Study	for	tomorrow’s	test!

Materials	&	Prep
Projector	and	computer
Whiteboard	and	marker
Results	from	electronic	survey	of	review	topics
Classroom	copies	of	the	practice	test	WS	1.9

Once	students	have	submitted	their	review	requests,	assemble	those	topics	into	categories
and	prepare	to	re-teach	the	topics	as	needed.

Pacing	Guide

Section Total	Time

Bell-work	and	attendance 5min

Introduction	and	test	format	orientation 15min

Test	review 30min

Check	student	study	lists 5min

Lesson	1.09:	Review

115

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit1/WS%201.9.docx

Procedure
Engage	the	class	in	the	review	session	by	pointing	out	that	your	review	topics	have	been
hand	selected	by	the	class.	Explain	that	you	will	review	test-taking	strategies	in	addition	to
reviewing	subject	matter.

Bell-work	and	Attendance	[5	minutes]

Introduction	and	Test	Format	Orientation	[15	minutes]

1.	 Clearly	indicate	that	you	expect	all	students	to	have	a	list	of	review	topics	to	study	this
evening.	Periodically	remind	students	that	this	list	will	be	checked	at	the	end	of	class.

2.	 Begin	by	explaining	the	portions	of	the	mock-test.	Read	aloud	the	instructions	on	each
page,	and	explain	the	strange	layout	(the	test	is	designed	to	look	like	the	AP	exam,	and
contains	all	of	the	directions	on	the	exam	so	students	will	not	have	to	waste	time
understanding	them	in	May).

3.	 Solve	the	sample	problems	on	the	test	as	a	whole	group,	encouraging	students	to	give
you	the	answers	whenever	possible.	Answer	any	questions	that	students	bring	up	as
you	go.

Test	Review	[30	minutes]

1.	 Using	the	results	from	the	electronic	survey,	address	the	various	review	topics,
prioritizing	questions	that	popped	up	the	most.

i.	 Some	questions	you	may	already	have	addressed	while	working	through	the
sample	test.

ii.	 Be	ready	for	additional	questions	to	pop	up	as	you	go.	Save	yourself	the	work	and
use	old	homework	questions	and	student-generated	test	questions	as	examples	to
work	through.

iii.	 Jot	down	notes	about	which	topics	you	covered	in	review	so	you	can	adjust	the
exam	to	reflect	the	topics	your	students	have	learned.

2.	 Use	a	combination	of	group-solving	questions	on	the	whiteboard,	think-pair-share,	and
timed-response	as	review	strategies.

3.	 After	you’ve	completed	reviewing	an	idea,	remind	the	class	that	they	should	write	down
that	topic	if	they	feel	they	still	have	to	review	it	tonight.	(Yes,	this	will	be	a	reminder
every	few	minutes,	but	it	will	pay	off	later	when	students	start	creating	review	lists
without	prompting	later	in	the	year!)

Lesson	1.09:	Review

116

Check	student	study	lists	[5	minutes]

Spend	the	last	5	minutes	of	class	checking	each	student’s	review	topic	list.

Accommodation	and	Differentiation
In	ELL	classes,	you	may	want	to	change	code-writing	questions	to	Parsons	Problems.
Educational	research	shows	a	high	correlation	between	Parsons	scores	and	code	writing
scores,	and	a	low	correlation	between	code	writing	and	tracing	and	between	Parsons	and
tracing.	(In	other	words,	Parsons	Problems	accurately	assess	a	students’	ability	to	create
code.)	For	more	information	on	Parsons	Problems,	check	out	this	paper
(https://cseweb.ucsd.edu/classes/fa08/cse599/denny.pdf).

Even	in	a	non-ELL	class,	you	may	want	to	change	some	Section	II	questions	to	Parsons
problems	because	(1)	grading	the	questions	is	easier,	since	logic	and	syntax	errors	are	easy
to	discern,	and	(2)	students	challenged	by	language	processing	are	able	to	more	quickly
complete	the	problem.

Teaching	Tips
Tips	for	Assessment:	http://csteachingtips.org/tips-for-assessing-programming

Forum	discussion
Lesson	1.09	Unit	1	Test	(TEALS	Discourse	account	required)

Lesson	1.09:	Review

117

https://cseweb.ucsd.edu/classes/fa08/cse599/denny.pdf
http://csteachingtips.org/tips-for-assessing-programming
http://forums.tealsk12.org/c/ap-cs-a-unit-1/1-99-unit-1-test

Lesson	2.00	—	Test	Review	&	Reteach

Overview

Objectives	—	Students	will	be	able	to…

Re-learn	or	strengthen	content	knowledge	and	skills	from	Unit	1.

Assessments	—	Students	will…

Re-submit	test	answers	with	updated	corrections	for	partial	or	full	credit
Credit	depends	on	instructor	preference

Homework	—	Students	will…

Read	BJP	2.1	except	for	“Mixing	Types	and	Casting”
Correct	any	incorrect	test	answers	by	re-answering	on	a	separate	sheet	of	paper

To	get	back	credit,	they	must	justify	their	new	answers
Staple	new	answer	sheet	to	old	test	and	turn	in	tomorrow

Materials	&	Prep
Projector	and	computer
Whiteboard	and	markers
Corrected	student	tests
Student	grades	(posted	online,	emailed	to	students,	or	handed	back	on	paper	in	class)
Digital	copy	of	test	questions	for	projector

Pacing	Guide

Section Total	Time

Bell-work	and	attendance 5min

Class	discussion	(if	needed) 10min

Test	review	and	reteach 30min

Check	student	notes	and	return	tests 5min

Lesson	2.00:	Test	Review	&	Reteach

118

Procedure
Return	student	grades	before	class	begins	or	while	students	are	completing	the	bellwork.

Do	not	return	students’	tests	before	the	review	session,	since	you	want	to	motivate	students
to	pay	attention	to	the	entire	review,	taking	supplemental	notes	the	entire	time.

Bell-work	and	Attendance	[5	minutes]

Class	Discussion	(if	needed)	[10	minutes]

1.	 If	grades	are	low,	invite	the	class	to	a	discussion	of	what	can	be	improved.	Begin	with
student	complaints	and	suggestions	to	build	student	buy-in.	Ask	students:

How	they	felt	they	were	going	to	do	before	the	test
What	surprised	them	once	they	were	taking	the	test
What	they	felt	worked	in	the	first	unit	(lessons,	review	strategies,	assignments)
What	do	they	think	they	want	to	change	for	the	second	unit

2.	 Once	you	feel	that	a	dialogue	has	been	established,	validate	students’	feelings,	then
challenge	them	(e.g.	AP	courses	are	stressful,	but	this	is	good	practice	for	college,
where	the	pace	is	faster	and	professors	don’t	give	personalized	instruction).	In	a	non-
judgmental,	supportive	tone,	remind	students	that	to	be	successful	in	the	course:

Reading	is	mandatory

Homework	is	mandatory	(And	valuable!	You	will	never	assign	“busy”	work.)

To	better	manage	their	time,	students	should	plan	for	1	hour	of	homework	a
weeknight,	with	up	to	2	hours	of	homework	each	weekend.	If	this	seems
impossible,	they	should	meet	with	you	or	their	guidance	counselor	to	assess
whether	they	can	fit	in	an	AP	class	at	this	time.

It	is	VERY	important	to	keep	your	tone	sympathetic	at	this	point—an	overworked,
overstressed,	underperforming	student	will	slow	your	entire	class	down,	and	color
that	student	against	CS	for	the	future!

Test	Review	and	Reteach	[30	minutes]

1.	 Walk	the	students	through	each	question	on	the	test,	glossing	over	questions	that
everyone	answered	correctly.

Lesson	2.00:	Test	Review	&	Reteach

119

a.	You	can	ask	for	students	to	volunteer	answers,	or	call	on	students	randomly.	Make
sure	that	students	explain	their	logic	when	they	answer.	If	a	student	gives	an	incorrect
answer,	the	explanation	will	tell	you	what	you	need	to	re-teach	or	clarify.

b.	Do	not	skip	questions	that	everyone	answered	correctly,	but	do	not	spend	more	than
the	time	it	takes	to	read	the	question,	and	congratulate	students’	correct	answers.

2.	 Project	a	copy	of	each	question	as	you	review—this	will	help	students	recall	the
question/process	the	information.

3.	 Make	sure	that	students	are	taking	notes	during	the	re-teach,	reminding	students	that
for	homework,	they	will	have	an	opportunity	to	win	back	some	of	the	points	on	their
exam.

4.	 For	Section	II	questions,	select	a	sample	of	student	work	(with	any	identifying
information	obscured),	and	work	through	the	answer	together	as	a	class.

Check	student	notes	and	return	tests	[5	minutes]

At	the	end	of	class,	check	student	notes,	and	return	the	tests	in	hard	copy	form	if	applicable.

Accommodation	and	Differentiation
The	curriculum	does	not	officially	cover	the	char	type	since	it	is	not	included	in	the	AP
subset.	However,	if	your	class	is	progressing	quickly,	feel	free	into	introduce	char	into	all
future	examples,	worksheets,	and	tests.

In	ELL	classrooms,	you	should	give	more	examples	for	each	type,	and	spend	more	time
drilling	during	the	introduction	and	note-taking	segments.

Forum	discussion
Lesson	2.00	Test	Review	and	Reteach	(TEALS	Discourse	account	required)

Lesson	2.00:	Test	Review	&	Reteach

120

http://forums.tealsk12.org/c/unit-2/2-00-test-review-reteach

Lesson	2.01	—	Basic	Data	Concepts

Overview

Objectives	—	Students	will	be	able	to…

Identify	and	categorize	data	types
Identify	operators	and	operands.
Correctly	apply	rules	of	precedence

Assessments	—	Students	will…

Write	code	that	yields	a	given	answer,	using	rules	of	precedence
Create	expressions	and	predict	output	using	operator/operand	expression	sets

Homework	—	Students	will…

Complete	self-check	questions	1-3	(4 	edition:	1,	3,	4)
Read	BJP	2.2	up	to	“String	Concatenation”

Materials	&	Prep
Projector	and	computer
White	paper	and	markers
Classroom	sets	of	operator/operand	expression	cards	created	from	WS	2.1
Pair	or	small	group	student	assignments

Operator/Operand	Expression	sets	can	be	printed	and	cut	from	regular	printer	paper,	or	you
can	write	them	out	on	construction	paper,	creating	color-coded	sets	(recommended	to
prevent	cheating	and	reinforce	memory	cues).

Pacing	Guide

th

Lesson	2.01:	Basic	Data	Concepts

121

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit2/WS%202.1.docx

Section Total	Time

Bell-work	and	attendance 5min

Introduction	to	data	types 10min

Think-pair-share	activity 5min

Introduction	to	operators	and	precedence 10min

Evaluating	Expressions	activity 20min

Check	student	study	lists 5min

Procedure
Hook	your	class	today	by	explaining	that	they’re	going	to	be	able	to	create	a	calculator	by
the	end	of	this	week.

Bell-work	and	Attendance	[5	minutes]

Introduction	to	Data	Types	[10	minutes]

Begin	with	a	brief	lecture	about	data	types.

To	write	a	more	complicated	program	like	a	calculator,	we	need	to	familiarize	ourselves
with	the	different	types	of	data	that	Java	can	work	with.

Type	(or	data	type):	a	name	for	a	category	of	data	values	that	are	all	related

Type	int	describes	all	whole	numbers,	or	integers	(have	students	name	some
examples)

Type	double	describes	all	numbers	with	decimal	points	(have	students	give	some
examples)

You	can	remember	if	something	is	a	double	because	there	are	numbers	on
both	sides	of	a	decimal	point	(like	2	numbers,	double	numbers)

Type	boolean	describes	logical	values—this	means	true	or	false.	There	are	no
other	values	in	type	boolean.

An	expression	is	a	simple	value,	or	a	set	of	operations	(an	equation)	that	produces	a
value.

One	simple	example	of	an	expression	is	value,	like	3.14	or	439.

Lesson	2.01:	Basic	Data	Concepts

122

Another	example	of	an	expression	is	2	+	5.9,	because	it	is	an	operation	that
produces	a	value.	(Ask	students	to	point	out	the	int,	double,	and	expression	in	this
example.)

In	the	expression	2	+	5.9,	the	plus	sign	is	called	an	operator	because	the	symbol
indicates	an	operation	to	be	performed	on	one	or	more	values.

We	refer	to	the	values	as	operands—both	int	and	double	are	operands.

Think-Pair-Share	Activity	[5	minutes]

1.	 While	students	are	finishing	writing	down	definitions	in	their	notes,	write	an	assortment
of	data	type	examples	on	the	board.

2.	 Have	students	categorize	all	of	the	primitive	types	on	the	board	during	a	Think-Pair-
Share	exercise.	Remind	students	to	do	scratch	work	in	their	notebooks,	since	it	will
count	towards	their	classwork	grade	(this	encourages	everyone	to	work	during	the
“think”	stage	of	the	activity).

3.	 Bring	the	class	back	to	whole	group,	and	call	on	students	to	share	a	category	for	each
data	type.

Introduction	to	Operators	and	Precedence	[10	minutes]

1.	 Do	a	quick	review	of	arithmetic	operators.	Students	should	be	able	to	volunteer	most	of
these,	but	you	may	have	to	spend	some	review	on	mod,	especially	if	your	class	is	not
on	grade	level	for	mathematics.

2.	 Ask	students	for	the	operators	that	represent	addition	and	subtraction.

3.	 Introduce	the	special	symbols	we	use	for	the	operators	multiplication	and	division.

Division	has	slightly	different	rules	if	you’re	working	in	type	int:

12	/	5	evaluates	to	2,	because	even	though	the	calculator	shows	us	2.4,	int
doesn’t	let	us	have	a	decimal	point	(what	type	does?)

It’s	very	important	to	remember	that	int	always	drops	the	part	after	the	decimal
point.	So	even	if	you	evaluated	39	/	10,	your	answer	would	be	3,	not	4.

4.	 Introduce	the	mod	%	operator,	and	have	students	work	through	a	few	examples	with
you	to	practice.

In	elementary	school	we	called	it	a	“remainder”

Lesson	2.01:	Basic	Data	Concepts

123

1079	%	34	evaluates	to	25,	because	you	get	31	R	25	(34	goes	into	1079	34	times,
with	25	left	over)

If	you	try	to	get	the	answer	with	your	calculator,	you	won’t	get	25—you’ll	need	to	do
long	division	to	get	the	right	answer	(or,	you	can	get	Java	to	do	it!)

5.	 If	we	don’t	use	parentheses	in	our	expressions,	Java	uses	precedence	to	decide	which
operations	go	first	(students	will	probably	mention	PEMDAS),	and	evaluates	left-to-right:

13	*	2	+	239	/	10	%	5	–	2	*	2
Start	left	to	right,	13	*	2	evaluates	to	26
239	/	10	evaluates	to	23	(have	students	do	this	one	to	see	if	they	catch	the	int)
Still	moving	left-to-right,	now	23	*	5	evaluates	to	3,	and	2	*	2	evaluates	to	4
26	+	3	–	4	evaluates	to	25

Evaluating	Expressions	Activity	[20	minutes]

1.	 Depending	on	your	class	size,	have	students	form	pairs	or	small	groups

2.	 Give	each	pair	or	small	group	a	Ziploc	bag	with	a	set	of	operand/operator	cards.

3.	 Students	should	write	out	the	expressions	they	create,	along	with	the	value	they
evaluate	to,	in	their	notebooks.

4.	 Once	students	have	finished	a	set,	have	them	repackage	the	set	and	trade	with	another
group	(or	trade	in	their	set	with	you).

5.	 Encourage	groups	to	check	each	others’	answers	and	help	each	other	if	they	get	stuck.

Check	Student	Study	Lists	[5	minutes]

At	the	end	of	class,	go	over	student	notebooks.

Accommodation	and	Differentiation
The	curriculum	does	not	officially	cover	the	char	type	since	it	is	not	included	in	the	AP
subset.	However,	if	your	class	is	progressing	quickly,	feel	free	into	introduce	char	into	all
future	examples,	worksheets,	and	tests.

In	ELL	classrooms,	you	should	give	more	examples	for	each	type,	and	spend	more	time
drilling	during	the	introduction	and	note-taking	segments.

Teacher	Prior	CS	Knowledge

Lesson	2.01:	Basic	Data	Concepts

124

The	AP	CS	A	exam	covers	a	subset	of	the	Java	primitive	data	types.	For	a	more	though
understanding	of	the	Java	data	types	(byte,	short,	int,	long,	float,	double,	char,	and
boolean)	see	http://www.learnjavaonline.org/en/Hello%2C_World%21.

String	is	not	a	primitive	data	type	in	Java	but	is	a	class.	Strings	in	many	behaves	like	a
primitive	data	type,	for	example	you	can	add	two	Strings	together	with	the		+		sign.	This
is	a	source	of	confusion	for	many	beginner	Java	programmers	as	the	language	is
inconsistent	with	its	treatment	of	String.

Video
BJP	2–1,	Expressions
http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c2-1

CSE	142,	Basic	Data	Concepts	(40:42–49:59)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=b5df64f2-e42f-4943-
bab6-29eca0ab8f00&start=2442

Forum	discussion
Lesson	2.01	Basic	Data	Concepts	(TEALS	Discourse	account	required)

Lesson	2.01:	Basic	Data	Concepts

125

http://www.learnjavaonline.org/en/Hello%2C_World%21
http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c2-1
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=b5df64f2-e42f-4943-bab6-29eca0ab8f00&start=2442
http://forums.tealsk12.org/c/unit-2/2-01-basic-data-concepts

Lesson	2.02	—	Declaring	&	Assigning
Variables

Overview

Objectives	—	Students	will	be	able	to…

Identify,	declare,	and	assign	variables.

Assessments	—	Students	will…

Write	a	program	that	converts	temperature	from	Fahrenheit	to	Celsius.

Homework	—	Students	will…

Read	the	rest	of	BJP	2.2
Complete	self-check	questions	5,	6,	9,	12-15	(4 	edition:	6,	7,	10,	14-17)

Materials	&	Prep
Projector	and	computer	(if	you	are	able	to/opt	to	use	Eclipse	with	your	students)
White	paper	and	markers
Classroom	copies	of	WS	2.2
Pair	or	small	group	student	assignments
Sample	online	temperature	converter
(http://www.onlineconversion.com/temperature.htm)

Since	most	of	today’s	lesson	follows	WS	2.2,	you	should	have	read	through	the	worksheet.
You	may	prefer	to	delete	the	notes	from	the	worksheet	(so	it	is	only	a	sheet	of	exercises)	if
you	are	working	on	developing	note-taking	skills	in	your	classroom.	We	recommend	leaving
these	sections	in	for	ELL	classrooms,	so	your	students	can	focus	on	syntax	rules	instead	of
translating	what	they	are	hearing	to	vocabulary	they	need	to	then	write	in	their	notebooks.

Pacing	Guide

th

Lesson	2.02:	Declaring	&	Assigning	Variables

126

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit2/WS%202.2.docx
http://www.onlineconversion.com/temperature.htm

Section Total	Time

Bell-work	and	attendance 5min

Introduction	and	worksheet	exercises 25min

Practice-It	exercises 20min

Turn	in	worksheets,	wrap	up 5min

Procedure
Since	much	of	this	class	involves	learning	syntax,	there	will	be	a	lot	of	drilling	during	the
class.	Try	to	spice	up	the	lesson	by	allowing	students	to	work	in	pairs,	or	playing	soft	music
in	the	background	to	put	students	in	the	right	headspace	to	settle	down	for	work.

Hook	your	class	today	by	asking	which	of	them	are	taking	or	have	taken	physics	or
chemistry.	Ask	students	about	working	with	Farenheit	and	Celsius	temperatures—do	they
have	to	convert	temperatures	in	class?	Which	measurement	are	they	more	familiar	with?
Which	do	they	use	more	often?	Show	students	the	online	calculator	and	ask	if	they	ever	use
such	online	tools,	and	tell	students	that	they’re	going	to	learn	how	this	program	is	built	today.

Bell-work	and	Attendance	[5	minutes]

Introduction	and	Worksheet	Exercises	[25	minutes]

1.	 Using	WS	2.2,	walk	students	through	the	proper	way	to	declare	a	variable.

Be	sure	to	spot-check	for	understanding	by	having	students	give	you	the	definitions
of	type,	syntax,	declaration,	and	variable	(all	bolded	in	the	text).

Encourage	students	to	use	their	notes	if	needed.

2.	 Guide	students	through	the	syntax	rules	for	variable	declarations	by	working	through	the
first	few	examples	of	Exercise	1	in	pairs.

3.	 Give	students	a	few	minutes	to	complete	Exercise	1	on	their	own;	encourage	students
to	tackle	Exercise	2	as	well,	then	check	all	answers	together	as	a	whole	group.

4.	 Using	the	figure	on	Exercise	3	of	WS	2.2,	walk	students	through	the	proper	syntax	to
assign	a	variable.

Spot-check	for	understanding	by	asking	students	to	define	the	italicized	words.

Ask	students	for	a	few	sample	answers,	correct	them	if	needed,	then	give	students
a	few	minutes	to	complete	Exercise	3	in	pairs.

Lesson	2.02:	Declaring	&	Assigning	Variables

127

5.	 As	a	whole	group,	walk	students	through	Exercise	4	and	5.	Complete	5a	together	as	a
group,	then	let	students	work	on	5b	in	pairs.

At	this	point,	your	class	may	be	raring	to	get	started	on	the	rest	of	the	assignment	without
your	help.	If	they	are,	great!	Post	the	Practice-it	questions	on	the	board	so	they	can	continue
to	that	assignment	once	they	have	completed	the	worksheet.	If	you	class	wants	you	to	walk
them	through	string	concatenation,	go	through	the	examples	as	above.

Practice-It	Exercises	[20	minutes]

1.	 Have	students	log	in	to	Practice-It	to	complete	the	following	Practice-It	self-check
questions:

a.	studentVariables

b.	values	of	A,B,C

2.	 Have	students	complete	Practice-It	exercise	“displacement.”

3.	 Students	should	work	on	their	own,	but	if	the	exercise	is	too	challenging,	you	might	opt
to	have	students	collaborate	on	answers.	Be	sure	to	remind	students	that	each	student
should	turn	in	their	own	set	of	work.

Students	turn	in	worksheets,	wrap	up	[5	minutes]

At	the	end	of	class,	collect	WS	2.2	and	Practice-It	submissions.

Accommodation	and	Differentiation
If	you	have	students	who	are	speeding	through	this	lesson,	you	should	encourage	them	to:

Complete	Practice-It	self-check	problem	“timesOperator.”

Challenge	them	to	build	their	own	program	that	converts	Farenheit	to	Celsius	(this
version	won’t	take	user	input—yet!)

Have	the	student	create	a	classroom	poster	diagraming	the	parts	of	variable	declaration
&	assignment.

If	your	class	is	struggling	with	learning	syntax,	you	can	split	the	lesson	into	2	lessons,	and/or
take	off	some	of	the	homework	questions.	If	splitting	the	lesson	in	two,	we	recommend
stopping	today’s	lesson	before	string	concatenation.

Lesson	2.02:	Declaring	&	Assigning	Variables

128

Common	Mistakes
Variables	common	mistakes:
http://interactivepython.org/runestone/static/JavaReview/VariableBasics/commonMistakes.ht
ml

Misconceptions
Students	will	draw	on	their	math	knowledge	when	learning	variables.	This	leads	to
confusion	on	the	differences	in	a	programming	language.

The	equal	sign		=		is	assignment	in	Java,	not	equality.	When	reading	out	code,	explicitly
saying	“assignment”	will	help	reinforce	the	concept	that		=		is	not	equality:		x	=	1		is
read	as	“x	is	assigned	the	value	1”.

A	variable	is	a	container	for	value	that	can	change,	it	does	not	denote	a	fixed	value.
From	WS2.2,	consider	the	following	statements:

int	age	=	17;

age	=	age	+	1;

Students	may	view	the	second	line	of	code	as	a	math	equation	and	miss	the	point	that
age	is	a	variable	and	contains	a	value.	The	age	=	age	+	1	changes	the	value	of	age.
When	learning	Java	there	is	the	code	which	is	static,	the	running	of	the	code,	and	the
state	of	the	variable	during	runtime	which	is	fundamentally	different	from	an	equation	in
math	that	can	be	substituted	and	manipulated	to	solve	for	some	unknown.

Students	read		y	=	x	+	2;		and	think	the	equation	is	stored	in	y,	not	a	value.

x	=	1;

y	=	x	+	2;

x	=	3;

System.out.println	(y);	//	what	is	displayed	for	y?

For	students	with	the	misconception	that	the	equation	is	stored,	they	will	incorrectly
compute	6	as	what	is	displayed	for	y.

Java	is	not	a	spreadsheet	that	stores	the	equation.	Explicitly	teaching	that	x	and	y	are
independent	variables	in	a	programming	language	and	hold	values	is	an	important
distinction.	This	differs	in	math	where		y	=	x	+	2		is	a	relationship.	Showing	the	state	of

Lesson	2.02:	Declaring	&	Assigning	Variables

129

http://interactivepython.org/runestone/static/JavaReview/VariableBasics/commonMistakes.html

the	variables	can	be	achieved	using	the	whiteboard,	the	debugger	by	stepping	through
one	line	of	code	at	a	time,	and	examining	variables,	or	using	a	visualization	tool	like
http://cscircles.cemc.uwaterloo.ca/java_visualize/.

Video
BJP	2–2,	Variables	and	Assignment
http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c2-2

CSE	142,	Variables	(5:12–12:48)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=ca84c6fe-878e-4bcf-
92d4-a18edd3fef21&start=310

CS	Homework	Bytes,	Variable	and	Assignment,	with	Elizabeth
https://www.youtube.com/watch?v=fPqGiexXi_Y

Forum	discussion
Lesson	2.02	Declaring	and	Assigning	Variables	(TEALS	Discourse	account	required)

Lesson	2.02:	Declaring	&	Assigning	Variables

130

http://cscircles.cemc.uwaterloo.ca/java_visualize/
http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c2-2
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=ca84c6fe-878e-4bcf-92d4-a18edd3fef21&start=310
https://www.youtube.com/watch?v=fPqGiexXi_Y
http://forums.tealsk12.org/c/unit-2/2-02-declaring-assigning-variables

Lesson	2.03	—	String	Concatenation	&
Increment	Decrement	Operators

Overview

Objectives	—	Students	will	be	able	to…

Apply	the	rules	of	string	concatenation.
Correctly	interpret	incrementing	and	decrementing	statements.

Assessments	—	Students	will…

Evaluate	statements	and	predict	output	during	a	game	of	grudgeball

Homework	—	Students	will…

Read	remainder	of	BJP	2.2
Complete	self-check	question	4	(4 	edition:	5)

Materials	&	Prep
Projector	and	computer	(optional)
White	paper	and	markers
Rules	for	grudgeball	(see	website	for	details:
http://toengagethemall.blogspot.com/2013/02/grudgeball-review-game-where-kids-
attack.html)
Team	assignments	that	divide	your	class	into	5	or	6	teams
Nerf	hoop	&	ball	(or	wastepaper	and	trash	can)
Taped	2-	and	3-point	lines

Take	the	time	to	familiarize	yourself	with	the	rules	of	grudgeball,	and	test	out	your	2	and	3
point	lines	before	class	begins	(you	may	need	to	readjust	them).	If	you	can	get	permission
from	your	school	to	leave	tape	on	the	floor,	it	is	helpful	to	have	those	lines	down	for	the	rest
of	the	year.	In	future	classes,	if	your	students	are	having	a	hard	time	settling	down	during	a
review	session,	or	can’t	stand	a	worksheet,	you	can	always	convert	the	worksheet	or	review
session	into	a	quick	game	of	grudgeball.

th

Lesson	2.03:	String	Concatenation	&	Increment	Decrement	Operators

131

http://toengagethemall.blogspot.com/2013/02/grudgeball-review-game-where-kids-attack.html

Pacing	Guide

Section Total	Time

Bell-work	and	attendance 5min

Introduction	and	note-taking 15min

Grudgeball 35min

Procedure
Because	today’s	lesson	combines	several	marginally-related	(but	important)	concepts	with
no	main	theme,	the	drilling/activity	portion	of	the	class	will	serve	to	tie	the	lesson	together	in
the	form	of	a	class	competition.	If	space	and	whiteboard	setup	allow,	set	up	the	grudgeball
“court”	and	scoreboard	before	class	begins	so	as	to	mystify	the	students.	Before	you	begin
lecture,	announce	to	students	that	they	should	pay	close	attention,	since	the	lecture	content
will	be	tested	during	the	game.

Bell-work	and	Attendance	[5	minutes]

Vocabulary	and	History	of	Bugs	[10	minutes]

1.	 Begin	with	a	lecture	about	the	topics	to	be	covered.

String	concatenation:	lets	you	put	together	several	strings	into	one	string,	the	way
we	combine	numbers	in	an	expression!

When	you	see	a	+	between	strings	(look	for	those	quotation	marks!),	that	means
that	you	“add”	the	strings	together:

System.out.println("Spongebob	thinks	"	+	"the	best	time	to	wear"	+	"	a	sweate

r"	+	"is	all	the	time!");

Carefully	write	out	(or	point	out,	if	using	a	Powerpoint)	the	spaces	within	the
Strings.	Write	out	how	the	string	concatenates,	asking	students	to	predict	the	latter
portion	of	the	string	combo.

Offer	up	a	second	example,	asking	the	students	to	predict	how	the	expression	will
evaluate,	discussing	the	placement	of	quotation	marks	first:

Lesson	2.03:	String	Concatenation	&	Increment	Decrement	Operators

132

System.out.println("Here	we	combine	"	+	1	+	"	integer"	+	"with	the	strings!")

;

Give	the	students	a	little	extra	guided	practice	by	walking	them	through	this	tricky
example:

42	+	"	is	the	answer	to	"	+	"everything!"	+	1	+	1

Stepwise,	show	students	how	this	evaluates	to	“42	is	the	answer	to
everything!11”

Ask	students	if	they	can	come	up	with	a	way	to	make	the	answer	evaluate	to
“42	is	the	answer	to	everything!2”

2.	 Switch	gears	and	tell	students	the	second	useful	tool	you’re	going	to	teach	them	today
is	how	to	increase	(or	decrease)	a	variable	by	a	particular	amount	without	writing	a
whole	separate	equation.

Briefly	explain	that	in	Java,	the	equations	below	mean	“add	7	to	the	current	value	of
x,”	“divide	the	current	value	of	y	by	3,”	instead	of	the	traditional	mathematical	use	of
“equals.”	Immediately	show	students	how	to	write	the	abbreviated	versions	of	these
statements:

	x	=	x	+	7;		OR		x	+=	7;	
	y	=	y	/	3;		OR		y	/=3;	

Once	students	have	wrapped	their	heads	around	this	non-algebraic	reading	(and
given	you	some	correct	examples),	explain	the	special	case	of	incrementing	or
decrementing	by	1:

	x++;		OR		++x;	
	x--;		OR		--x;	

Grudgeball	[35	minutes]	[Optional]

If	you	feel	like	your	class	understands	increment	and	string	concatenation,	consider	skipping
this	game	and	focusing	on	on-the-board	examples	(you	can	use	the	questions	from
Grudgeball	below)	or	moving	on	to	2.4.

1.	 Divide	students	into	their	assigned	teams.

2.	 Review	the	rules	for	grudgeball,	and	have	the	students	repeat	the	rules	back	to	you.

3.	 Using	the	problems	listed	below	(and	any	you	may	add,	depending	on	your	class’
needs),	play	grudgeball	until	a	team	wins,	or	until	the	class	period	ends.

Lesson	2.03:	String	Concatenation	&	Increment	Decrement	Operators

133

a.	If	a	class	gets	the	answer	wrong,	BRIEFLY	pause	the	game	to	have	students	offer
corrections	before	moving	to	the	next	team’s	question.

b.	If	correction	seems	to	be	dragging	on,	jump	in	and	quickly	re-teach	using	the
incorrect	answer	as	your	example.	It	is	important	to	keep	the	pace	going	to	maintain
student	interest	in	the	game!

Gudgeball	problems	&	answers	have	been	grouped	assuming	that	you	have	6	teams.	If	you
have	fewer	teams,	each	“round”	will	be	shifted	accordingly,	so	you	may	have	rounds	where
different	teams	are	practicing	different	concepts.	Judge	each	team’s	knowledge	gaps,	and
adjust	which	questions	you	ask	each	group	accordingly.

GRUDGEBALL	PROBLEMS	AND	ANSWERS

What	do	these	evaluate	to?

1)		"Patrick"	+	"	why"	+	"are	you"	+	"here?"		→		Patrick	whyare	youhere?	

2)		2	+	"words:	"	+	"Na.	Chos."		→		2words:	Na.	Chos.	

3)		"Friendship	"	+	1	+	"$"	+	"	magic!"		→		Friendship	1$	magic!	

4)		"Watch	out"	+	"	for	"	+	"\"\""	+	""	+	"escape	sequences!"		→		Watch	out	for	""escape
sequences!	

5)		"Pikachu,	pika	pika"	+	"peeeeeeeeka"	+	"	ch"	+	0	+	0	+"!"		→		Pikachu,	pika	pikapeeeeka
ch00!	

6)		"PEMDAS"	+	"doesn't	"	+	(2	+	3)	*	4	+	"matter	"	+	"right?"	+	1		→		PEMDASdoesn’t
20matter	right?1	

Write	a	statement	that:

7)	Increases	the	current	value	of	x	by	150.	→		x	=	x	+	150;		or		x	+=	150;	

8)	Decreases	the	current	value	of	y	by	9.	→		y	=	y	-	9;		or		y	-=	9;	

9)	Multiplies	the	current	value	of	z	by	5.	→		z	=	z	*	5;		or		z	*=	5;	

10)	Divides	the	current	value	of	q	by	14.	→		q	=	q	/	14;		or		q	/=	14;	

11)	Increments	x	by	1.	→		x++;	,		++x;	,		x	=	x	+	1;	,	or		x	+=	1;	

12)	Decrements	x	by	1.	→		x--;	,		--x;	,		x	=	x	–	1;	,	or		x	-=	1;	

Predict	the	output:

Lesson	2.03:	String	Concatenation	&	Increment	Decrement	Operators

134

13)

			int	x	=	1;

			x	+=	3;

			System.out.println("The	value	of	x	is	"	+	x);

→	Output:		The	value	of	x	is	4	

14)		1	+	1	+	1	+	"1"	+	1	+	1	+	1		→	Output:		31111	

15)

			int	y	=	2;

			y	/=	2;

			System.out.println("1	+	"	+	y	+	"is	how	much	again?");

→	Output:		1	+	1is	how	much	again?	

16)		110	–	10	+	"flip	it	"	+	0	+	0	+	1		→	Output:		100flip	it	001	

17)		"100	–	10"	+	"flip	it	"	+	0	+	"0	+	1"		→	Output:		100	–	10flip	it	00+1	

18)

			int	number	=	5;

			number++;

			System.out.println("My	new	value"	+	"is	the	"	+	"number	"	+	number);

→	Output:		My	new	valueis	the	number	6	

Accommodation	and	Differentiation
If	your	class	is	struggling	with	learning	string	concatenation	and/or	incrementing
decrementing,	the	best	strategy	here	is	to	repeat,	repeat,	repeat.	Add	more	simple	problems
before	you	advance	to	the	mixed	type	concatenation,	and	work	through	more	of	the
problems	as	a	whole	group.

In	ELL	classrooms,	you	should	read	each	question	aloud	in	addition	to	showing	it	on	the
board	or	projector.

Common	Mistakes

Lesson	2.03:	String	Concatenation	&	Increment	Decrement	Operators

135

Common	mistakes	with	strings:
http://interactivepython.org/runestone/static/JavaReview/Strings/sMistakes.html

Videos
CSE	142	(12:48–18:29)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=ca84c6fe-878e-4bcf-
92d4-a18edd3fef21&start=769

CS	Homework	Bytes,	Mathematical	Operators	and	Precedence,	with	Vinnie
https://www.youtube.com/watch?v=RTmRwEy-yFA

Forum	discussion
Lesson	2.03	String	Concatenation	&	Increment	Decrement	Operators	(TEALS	Discourse
account	required)

Lesson	2.03:	String	Concatenation	&	Increment	Decrement	Operators

136

http://interactivepython.org/runestone/static/JavaReview/Strings/sMistakes.html
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=ca84c6fe-878e-4bcf-92d4-a18edd3fef21&start=769
https://www.youtube.com/watch?v=RTmRwEy-yFA
http://forums.tealsk12.org/c/unit-2/2-03-string-concatenation-increment-decrement-op

Lesson	2.04	—	Mixing	Types	&	Casting

Overview

Objectives	—	Students	will	be	able	to…

Describe	which	types	automatically	convert	into	others	when	appearing	together
Predict	how	an	expression	with	mixed	types	will	evaluate
Convert	types	by	casting

Assessments	—	Students	will…

Use	“zombie	rules”	of	precedence	to	correctly	write	code	that	yields	a	given	answer
Create	their	own	expressions
Predict	output	by	completing	and	trading	worksheets

Homework	—	Students	will…

Read	BJP	2.3	up	to	“Nested	for	Loops”
Complete	self-check	question	18
Finish	the	worksheet	if	not	completed	in	class

Materials	&	Prep
Projector	and	computer	(if	you	are	able	to/opt	to	use	Eclipse	with	your	students)
White	paper	and	markers
Classroom	copies	of	WS	2.4,	Poster	2.4
Zombie/werewolf	video	(https://www.youtube.com/watch?v=ZL-
58z3HxUI&feature=youtu.be&t=2m41s)

Probably	want	to	play	on	mute!
Unicorn	image
(http://1.bp.blogspot.com/_WOWQJUlRtKQ/TRD5BW8v5GI/AAAAAAAABAY/llLQ4VSC
skc/s1600/moon-wallpaper	9.jpg)

Pacing	Guide

Lesson	2.04:	Mixing	Types	&	Casting

137

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit2/WS%202.4.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit2/Poster%202.4.docx
https://www.youtube.com/watch?v=ZL-58z3HxUI&feature=youtu.be&t=2m41s
http://1.bp.blogspot.com/_WOWQJUlRtKQ/TRD5BW8v5GI/AAAAAAAABAY/llLQ4VSCskc/s1600/moon-wallpaper%209.jpg

Section Total	Time

Bell-work	and	attendance 5min

Introduction	to	Mixing	Types 10min

Activity	1 15min

Introduction	to	Casting 5min

Activity	2 15min

Turn	in	worksheets,	wrap	up 5min

Procedure
Today’s	class	uses	the	concept	of	infection	and	cure	as	metaphors	for	type	conversion	and
type	casting.	Have	the	YouTube	video	of	the	werewolves	and	zombies	playing	as	students
arrive.	Once	students	have	completed	bellwork,	hook	your	class	with	a	discussion	of	the
zombie/werewolf	fight	happening	on	the	video.

Bell-work	and	Attendance	[5	minutes]

Introduction	to	Mixing	Types	[10	minutes]

1.	 Here	are	some	questions	to	guide	this	opening	conversation:

Who	has	seen	movies	about	werewolves	or	zombies?
Can	anyone	tell	me	how	you	become	a	werewolf?
How	do	you	become	a	zombie?
What	do	you	think	would	happen	if	a	zombie	bit	a	werewolf?

2.	 Introduce	the	following	metaphor:

If	a	human	gets	bitten	by	a	werewolf,	they	become	a	werewolf.	If	a	werewolf	or
human	gets	bitten	by	a	zombie,	it	becomes	a	zombie.

So:	zombie	>	werewolf	>	human
The	same	sort	of	thing	happens	if	we	put	together	different	types	in	an	expression
(aka	“mixing	types”):

If	an	int	is	placed	in	an	expression	with	a	double,	Java	converts	it	to	a	double.
(It	gets	infected	and	becomes	a	double.)

If	a	double	or	int	is	placed	in	an	expression	with	a	String,	Java	converts	it	to	a
String.	(The	werewolf	double	gets	bitten	by	the	zombie	String,	and	is	now	also
a	zombie	String.)

Lesson	2.04:	Mixing	Types	&	Casting

138

So:		String		>		double		>		int	

In	Java	we	call	this	“promoting”	because	the	double	holds	more	information	than
int,	and	String	holds	more	information	than	double!	(We’ll	learn	more	about	what
information	is	stored	in	a	String,	but	for	now	just	remember	its	true.)

Spot-check	your	students	by	asking	them	to	name	the	fantasy-equivalent	for	each
type	in	an	example	on	the	board:

	2	+	2.3		(evaluates	to	4.3	because	human/int	2	is	promoted/infected	to
werewolf/double	2.0)

Activity	1	[15	minutes]

1.	 Have	students	begin	WS	2.4	alone	or	quietly	in	pairs	(this	strategy	is	recommended	for
ELL	classes).	Direct	students	to	only	work	through	werewolf	and	zombie	questions	(stop
at	the	unicorns).

2.	 Students	WILL	trip	up	on	the	mixed	type	String	questions.

a.	You	should	definitely	cover	an	example	or	two	of	these	on	the	board,	and	you	may
find	that	you	have	to	switch	to	whole	group	instruction	for	the	majority	of	these.

b.	Your	priority	should	be	to	thoroughly	complete	several	examples,	and	to	see	that
students	can	complete	these	questions	correctly	without	your	aid.	If	you	need	to	slow
down	your	pace,	go	for	it!

3.	 If	students	are	completing	the	questions	on-pace,	bring	the	class	together	for	another
round	of	whole-group	instruction.

Introduction	to	Casting	[5	minutes]

1.	 Introduce	the	concept	of	casting	by	asking	students	what	to	do	if	they	really	want	to
preserve	the	human	race	(int	type)?

2.	 Review/repeat	the	earlier	concepts	by	asking	students:	How	do	we	convert	werewolf-
doubles	to	human-ints?

3.	 Introduce	casting	(Ham	this	up:	“As	we	all	know,	you	can	cure	anything	with	unicorn
magic!”)

Unicorn	magic	=	“casting”	(remember	that	Unicorns	CAST	a	magical	spell	to
protect	humans	or	werewolves	from	infection/conversion)

To	cure	a	werewolf-double,	so	he	becomes	a	human-int,	you	can	CAST	it	by	putting
the	name	of	the	type	you	want	in	front	of	the	value	you	want	to	convert	(cast):

Lesson	2.04:	Mixing	Types	&	Casting

139

	(int)	42.9		⇒		42	

IMPORTANT:	Java	just	cuts	off	that	extra	part	after	the	decimal—it	always	rounds
toward	zero.

BUT	unicorn	magic	can’t	turn	zombies	back	into	anything	because	magic	can’t
bring	you	back	from	the	dead.	(Once	you’re	a	zombie,	you’re	always	a	zombie!)	So
casting	(int)str	or	(double)str	on	a	String	str	doesn’t	work.

Activity	2	[15	minutes]

1.	 Have	students	return	to	WS	2.4,	starting	on	the	unicorn/casting	segment	of	the
exercise.

2.	 Work	through	1	or	2	problems	as	a	whole	group	before	you	leave	students	to	their	own
devices.

3.	 If	student	frustration	levels	are	high,	bring	the	class	back	to	whole-group	and	work
through	a	few	more	examples	slowly	and	thoroughly.	If	you	need	to	revisit	the	analogy
or	have	students	flip	through	their	books	again,	you	should	do	so	at	this	point.

Turn	in	Worksheets,	Wrap	Up	[5]

At	the	end	of	class,	collect	the	completed	worksheets.

Accommodation	and	Differentiation
If	you	have	students	who	are	speeding	through	this	lesson,	you	should	encourage	them	to
draw	or	design	a	poster	showing	the	relationship	between	mixed	types.	The	poster	should
contain	large	images	of	humans,	werewolves,	zombies	and	unicorns	so	that	students	can
see	the	relationships	from	all	around	the	room.

Even	if	you	do	not	have	a	student	do	this	for	you,	we	HIGHLY	recommend	making	a	poster
of	this	sort.	Students	do	not	forget	it!	If	all	else	fails,	you	can	use	the	image	saved	as	Poster
2.4.

Video
CSE	142,	Casting	(18:39–31:29)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=ca84c6fe-878e-4bcf-
92d4-a18edd3fef21&start=1119

Lesson	2.04:	Mixing	Types	&	Casting

140

https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=ca84c6fe-878e-4bcf-92d4-a18edd3fef21&start=1119

CS	Homework	Bytes,	Type	Conversations,	with	Kristin
https://www.youtube.com/watch?v=y-4vMMeBcAc

Forum	discussion
Lesson	2.04	Mixing	Types	&	Casting	(TEALS	Discourse	account	required)

Lesson	2.04:	Mixing	Types	&	Casting

141

https://www.youtube.com/watch?v=y-4vMMeBcAc
http://forums.tealsk12.org/c/unit-2/2-04-mixing-types-casting

Lesson	2.05	—	for	Loops

Overview

Objectives	—	Students	will	be	able	to…

Trace	loops	to	predict	program	behavior.
Construct	loops	to	execute	simple	tasks.

Assessments	—	Students	will…

Trace	and	construct	loops	in	Practice-It	problems

Homework	—	Students	will…

Read	BJP	2.3	“Nested	for	Loops”
Complete	self-check	questions	19-21	(4 	edition:	22-24)

Materials	&	Prep
Projector	and	computer
White	paper	and	markers
Classroom	copies	of	WS	2.5

Pacing	Guide

Section Total	Time

Bell-work	and	attendance 5min

Introduction	to	for	loops 15min

Practice-It	activity 35min

Procedure

th

Lesson	2.05:	for	Loops

142

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit2/WS%202.5.docx

For	loops	are	very	confusing	in	the	beginning,	so	we’ve	prepared	a	student	handout	that
diagrams	the	parts	of	a	loop.	Encourage	students	to	take	supplemental	notes	in	their
notebook	and	on	the	handout.

Hook	your	students	by	betting	them	$100	that	you	can	write	a	program	that	outputs	the	first
1,000	integers	in	fewer	than	10	lines	of	code	(adjust	these	numbers	according	to	the
gullibility/jadedness	of	your	classroom).

Bell-work	and	Attendance	[5	minutes]

Introduction	to	for	Loops	[15	minutes]

1.	 If	you	haven’t	already,	distribute	the	handout	with	loop	diagrams	to	your	students.
Following	along	with	the	handout:

Start	building	your	for	loop,	narrating	the	parts	as	you	go.	Ask	students	for	help	with
the	different	components	of	the	program	(starting	with	the	public	class):

public	class	Count1000	{

				public	static	void	main	(String[]	args)	{

								for	…

(Break	to	work	through	the	first	page	of	the	handout.)

2.	 Call	on	students	to	read	the	parts	1–4.	Have	students	place	their	fingers	on	the	part	of
the	diagram	that	corresponds	to	the	explanatory	text.

3.	 Point	out	that	even	though	Java	is	reading	across	the	for	loop	at	the	top,	Java	jumps
down	to	check	out	the	body	of	the	loop	to	check	if	the	test	is	true.	If	it’s	true,	it	updates
the	loop	and	executes	what	was	in	the	body.

Trace	this	flow	of	control	on	the	board,	and	have	students	physically	trace	it	on	their
sheets	as	you	narrate	the	steps	again.

This	last	step	is	very,	very	important:	don’t	skip	it!	(humans	have	had
communication	by	touch	and	sight	long	before	we	evolved	language—the	learning
centers	of	our	brain	are	better	able	to	pick	up	new	information	if	we	involve
movement,	touch,	or	physical	manipulation).

4.	 Ask	students	to	do	a	quick	Think-Pair-Share	as	to	what	the	output	will	be	for	the	sample
code	on	the	handout.	Get	them	started	by	writing	out	the	first	and	second	line	of	output
while	you	trace	the	loop	as	a	whole	class.

Lesson	2.05:	for	Loops

143

If	this	goes	well,	move	on	the	final	example	and	the	activity	for	the	day.	If	it	doesn’t,	re-
teach	the	concepts	using	the	flow	chart	on	the	back	of	the	handout.

Again,	have	students	trace	the	diagram	with	their	hands.	Have	them	turn	the	sheet	back
over	to	the	code	diagram,	and	narrate	the	flow	of	control	as	they	move	their	hands	to
where	Java	is	reading	the	program.

5.	 Return	to	the	program	that	will	output	the	first	1,000	positive	integers	in	fewer	than	10
lines	of	code.	Encourage	students	to	guess	how	many	lines	it	will	take	to	write	the	whole
program:

public	class	Count1000	{

				public	static	void	main	(String[]	args)	{

								for	(int	i	=	1;	i	<	1000;	i++)	{

												System.out.println(i);

								}

				}

}

Tweak	different	parts	of	the	code	and	ask	students	to	predict	how	it	will	change	your
output.

Change	the	continuation	test	to		i	<=	1000	.
Change	the	variable		i		to		x	.
Change	the	update	to		i	+=	2		(or		x	+=	2	,	depending	on	which	code	you	have	up
there).
If	any	of	these	examples	stump	your	class	(and	they	will),	take	them	through	the
loop,	one	step	at	a	time,	writing	down	sample	output	to	find	the	new	pattern.

Practice-It	Activity	[35	minutes]

1.	 Depending	on	the	mood	and	frustration	levels	in	the	class,	you	may	choose	to	have
students	work	in	pairs.

a.	If	students	are	really	having	a	rough	time,	work	through	the	first	Practice-It	question
together	as	a	whole	group.

b.	Put	soft,	soothing	(but	upbeat)	music	on	in	the	background	to	ease	tension!

2.	 Have	students	log	in	to	Practice-It	to	complete	the	following	Practice-It	self-check
questions:

a.	Count2	b.	fingerTrap	c.	howManyLines

Lesson	2.05:	for	Loops

144

3.	 If	more	25%	or	more	of	the	class	is	struggling,	return	to	whole	group	with	the	stipulation
that	students	who	get	it	may	continue	working	independently.

Accommodation	and	Differentiation
If	you	have	students	who	are	speeding	through	this	lesson,	you	should	encourage	them	to
complete	Practice-It	self-check	problems	“numberTotal”	and	“blastoff”.

Teacher	Prior	CS	Knowledge
The	textbook	BJP	introduces	reducing	redundancy	and	generalization	early	in	the
curriculum.	Because	of	the	early	introduction,	student	have	not	been	exposed	to	the	logical
operators	and	have	only	been	introduced	to	the	notion	of	boolean	types.	You	can	let
students	know	that	the	class	will	go	over	the	middle	part	of	the	for	statement,	the
“continuation	test”,	will	be	covered	in	detail	in	a	future	lesson.

Misconceptions

Common	Syntax	Errors

Using	commas	as	the	delimiter	in	the	for	statement	is	a	common	error.	This	could	stem
from	the	difference	in	pattern	between	method	calls	that	use	comma	and	for	statements
that	use	the	semi-colon.

Specifying	that	each	of	the	3	parts	of	the	for	statement	is	a	Java	statement	that	ends	in
a	semi-colon	may	help	students	remember	the	delimiter	is	a	semi-colon.

Unbalanced	parentheses	and/or	curly	brackets	starts.

Many	classes	use	IDEs	in	the	classroom.	When	parentheses	or	curly	brackets	are	off,
the	editor	starts	indenting	the	code	in	non-standard	ways.	This	is	the	first	indication	to
the	student	that	there	is	something	wrong	with	the	syntax.	Letting	students	know	that
the	IDE	helps	format,	but	if	there	is	a	syntax	error	in	their	code	while	typing,	the	editor
will	not	format	correctly.	The	student	may	want	to	take	a	closer	look	at	their	code,
specifically	matching	parentheses	and	curly	brackets.

Incorrect	ending	for	statement	with	semi-colon.

Conceptual	Errors

Lesson	2.05:	for	Loops

145

Variable	scope	for	the	counting	variable	is	restricted	to	the	for	block.

Order	of	execution	of	the	initialization,	continuation	test,	conditional	statements,	and
update	statement.

When	walking	through	examples	of	a	for	loop,	it	is	tempting	to	use	boxes	to	represent
the	loop	variable.	However,	as	the	loop	variable	changes,	the	value	is	repeated	erased
to	indicate	the	new	value.	If	a	table	is	used	and	the	value	of	the	loop	variable	crossed
out,	the	students	can	see	the	progression	of	the	variable	through	the	iterations.

Video
BJP	2–3,	for	Loops
http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c2-3

CSE	142,	The	for	Loop	(31:30–42:03)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=ca84c6fe-878e-4bcf-
92d4-a18edd3fef21&start=1890

Forum	discussion
Lesson	2.05	for	Loops	(TEALS	Discourse	account	required)

Lesson	2.05:	for	Loops

146

http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c2-3
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=ca84c6fe-878e-4bcf-92d4-a18edd3fef21&start=1890
http://forums.tealsk12.org/c/unit-2/2-05-for-loops

Lesson	2.06	—	nested	for	Loops

Overview

Objectives	—	Students	will	be	able	to…

Trace	nested	loops	to	predict	program	behavior.
Construct	loops	to	execute	simple	tasks.

Assessments	—	Students	will…

Trace	and	construct	nested	loops	in	Practice-It	problems.

Homework	—	Students	will…

Read	BJP	2.4	“Scope”	and	“Pseudocode”
Complete	self-check	questions	26,	27	(4 	edition	29,	30)	and	exercise	4

Materials	&	Prep
Projector	and	computer
Whiteboard	and	marker

Pacing	Guide

Section Total	Time

Bell-work	and	attendance 5min

Introduction	to	nested	for	loops 15min

Practice-It	Activity 30min

Loop	Challenge 5min

Procedure

th

Lesson	2.06:	nested	for	Loops

147

Today	your	hook	is	another	wager,	only	this	time	the	students	have	to	create	the	code	to	get
the	reward	(TEALS	swag,	tickets	to	the	raffle,	bonus	points,	etc.).	If	you	plan	to	use	a	badge
system,	this	project	is	a	good	one	to	start	with	(a	‘loop’	badge,	perhaps?).

Bell-work	and	Attendance	[5	minutes]

Introduction	to	Nested	for	Loops	[15	minutes]

1.	 Remind	students	of	yesterday’s	bet,	then	tell	your	students	that	you’ll	award	them	[prize]
if	they	can	rewrite	the	program	from	yesterday	in	11	lines.	The	catch	is	that	student	can’t
use	a	loop	that	executes	more	than	10	times!	Explain	that	you’re	going	to	give	them	a
new	programming	tool	today,	and	then	they’ll	have	some	time	at	the	end	of	class	to	see
if	they	can	meet	your	challenge	for	the	points.

2.	 Review	the	concept	of	“control	structure,”	and	have	students	explain	to	you	that	the
loop	controls	the	statements	in	the	loop	body.	Ask	students	to	walk	you	through	the
example	on	the	board,	narrating	what	Java	is	doing	as	you	advance	your	hand	along
the	loop:

for	(int	i	=	1;	i	<=	3;	i++)	{

				System.out.println("Calacas	y	calaveras!");

}

You	might	consider	deliberately	leaving	in	an	error	or	two	as	you	write	the	code	on	the
board—students	LOVE	to	catch	you	in	an	error!	In	general,	leaving	in	errors	is	a	good
way	to	condition	error-checking	behavior	in	your	students	without	them	feeling	forced.	If
students	don’t	catch	the	error	before	you’re	ready	to	move	on,	point	to	it	and	ask
students	if	the	code	is	correct.	Occasionally	point	to	correct	code	and	ask	students	to
explain	why	it	is	a	proper	coding	choice,	or	what	other	options	would	be.

If	your	class	does	not	celebrate	Día	de	los	Muertos,	change	the	string	above	to	“Trick	or
Treat,”	“All	Saints	Day,”	“Kol	Sana	Wenta	Tayeb”	or	whatever	is	most	relevant.

If	your	class	needs	more	physical	engagement,	have	a	volunteer	come	to	the	board	to
be	console	output,	and	point	to	them,	directing	them	to	write	output	on	the	board	every
time	the	loop	is	executed.	You	can	also	have	another	student	walk	through	the	flow	of
the	loop	in	your	place.

3.	 As	you	insert	another	loop	to	create	a	nested	loop,	explain	that	the	great	thing	about
control	structures	is	that	they	can	control	other	control	structures!

Lesson	2.06:	nested	for	Loops

148

(Engagement	option:	if	your	class	is	familiar	with	Xzibit/Pimp	my	Ride,	this	is	a
great	opportunity	for	a	yo-dawg	meme,	but	at	this	point,	this	is	probably	only	a
reference	that	college-age	and	above	will	get.)

for	(int	i	=	0;	i	<	3;	i++)	{

				for	(int	j	=	1;	j	<=	3;	j++)	{

								System.out.println("Calacas	y	calaveras!");

				}

}

Point	out	that	we	always	use	a	different	control	variable	(j	instead	of	i)	so	that	Java
knows	we’re	writing	a	new	loop.

As	you	write	the	inner	loop,	ask	students	how	many	times	it	executes,	and	briefly
discuss	the	difference	between	initializing	at	0	and	1,	and	how	that	relates	to	<	or
<=	in	the	test.

Ask	students	how	many	lines	Java	will	output	(9),	and	walk	through	the	loop
showing	flow	of	control	and	directing	a	student	to	produce	the	output.

public	class	Count1000	{

				public	static	void	main	(String[]	args)	{

								for	(int	i	=	1;	i	<	1000;	i++)	{

												System.out.println(i);

								}

				}

}

4.	 Tweak	different	parts	of	the	code	and	ask	students	to	predict	how	it	will	change	your
output.

Change	the	continuation	test	to		i	<=	1000	.
Change	the	variable		i		to		x	.
Change	the	update	to		i	+=	2		(or		x	+=	2	,	depending	on	which	code	you	have	up
there).
If	any	of	these	examples	stump	your	class	(and	they	will),	take	them	through	the
loop,	one	step	at	a	time,	writing	down	sample	output	to	find	the	new	pattern.

Practice-It	Activity	[30	minutes]

Depending	on	the	mood	and	frustration	levels	in	the	class,	you	may	choose	to	have	students
work	in	pairs.

Lesson	2.06:	nested	for	Loops

149

If	students	are	really	having	a	rough	time,	work	through	the	first	Practice-It	question
together	as	a	whole	group.

Put	soft,	soothing	(but	upbeat)	music	on	in	the	background	to	ease	tension!

Have	students	log	in	to	Practice-It	to	complete	the	following	Practice-It	self-check
questions:

a.	starExclamation1	b.	starExclamation2	c.	starExclamation3

Have	students	complete	the	Practice-It	Exercise	“starTriangle.”

a.	You	should	emphasize	the	importance	of	constructing	a	structure	diagram	before
they	start	coding.

b.	Although	we	haven’t	talked	about	pseudocode	yet,	suggest	that	students	write	out	in
English	(or	whatever	their	preferred	language	is)	the	steps	that	they	will	need	to	do	to
solve	the	problem.	Encourage	students	to	work	on	this	in	pairs	if	needed.

If	more	25%	or	more	of	the	class	is	struggling,	return	to	whole	group	with	the	stipulation
that	students	who	get	it	may	continue	working	independently.

Loop	Challenge	[30	minutes]

1.	 On	the	board	or	the	projector,	bring	up	the	challenge	you	introduced	in	the	beginning	of
class.

Students	may	begin	on	the	challenge	once	they	have	finished	their	Practice-It
exercises.

In	order	to	encourage	all	students	to	try	the	challenge,	allow	slower	students	to
submit	their	challenge	answer	electronically	by	the	end	of	the	day.	(This
compromise	gives	them	time	to	work	on	the	code	at	lunch	or	after	school,	but
dissuades	students	from	directly	copying	others’	answers.)

LOOP	CHALLENGE

Write	a	program	that	outputs	the	first	1,000	integers	in	11	lines	of	code.	You	may	not	use	a
loop	that	executes	more	than	10	times.

Lesson	2.06:	nested	for	Loops

150

public	class	Count1000	{

				public	static	void	main	(String[]	args)	{

								for	(int	i	=	0;	i	<	10;	i++)	{

												for	(int	j	=	0;	j	<	10;	j++)	{

																for	(int	q	=	0;	q	<	10;	q++)	{

																				System.out.println(i);

																}

												}

								}

				}

}

Accommodation	and	Differentiation
If	you	have	students	who	are	speeding	through	this	lesson,	you	should	encourage	them	to:

Complete	Practice-It	self-check	Exercises	“fibonacci”	and	“numberTriangle.”

Develop	an	algorithm	for	tackling	complex	coding	problems.	(What	generalizable	steps
did	they	take	to	correctly	build	the	nested	loop	programs?)

Have	the	student	turn	these	ideas	into	a	mnemonic,	poster,	or	checklist	to	share	with
the	class.

Misconceptions
Determining	the	purpose	of	the	two	variables	counters	in	nested	loops	is	confusing	to
students.	Most	introductions	to	nested	loops	use	“i"	and	“j”	as	the	loop	variables.
Starting	with	“i"	is	a	carryover	from	the	Fortran	programming	language	where	variables
starting	with	the	letters	I	to	N	were	integers	and	loop	variables	are	integers.	However,
Java	does	not	have	this	restriction,	integer	variables	can	start	with	any	letter.

In	order	to	help	students	grasp	the	two	loop	variables,	use	loop	variables	in	context
where	students	may	be	more	familiar	with:	row/column,	x/y.	This	affords	using	a
graphical	representation	that	students	can	plot	while	tracing	through	the	nested	loops.

Confusion	of	the	order	of	execution	of	the	3	parts	of	the	for	loop	from	a	single	for	loop
gets	compounded	with	nested	for	loops.	The	order	of	execution	for	the	nested	loop	is:

outer	loop	initialize	variable
outer	loop	test	condition
inner	loop	initialize	variable
inner	loop	test	condition

Lesson	2.06:	nested	for	Loops

151

body	of	inner	loop
inner	loop	update	variable
repeat	inner	loop
outer	loop	update	variable
repeat	outer	loop

Attempting	to	use	the	inner	loop	variable	in	the	outside	loop	block.	It	is	not	obvious	to
beginners	that	even	though	the	inner	block	variable	is	declared	inside	the	outer	block,
the	inner	block’s	scope	is	restricted	to	the	inner	block.

Video
BJP	2–4,	Nested	for	Loops
http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c2-4

CSE	142,	Nested	for	Loops	(16:18–37:50)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=ca84c6fe-878e-4bcf-
92d4-a18edd3fef21&start=2524

Forum	discussion
Lesson	2.06	Nested	for	Loops	(TEALS	Discourse	account	required)

Lesson	2.06:	nested	for	Loops

152

http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c2-4
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=ca84c6fe-878e-4bcf-92d4-a18edd3fef21&start=2524
http://forums.tealsk12.org/c/unit-2/2-06-nested-for-loops

Lesson	2.07	—	Scope	&	Pseudocode

Overview

Objectives	—	Students	will	be	able	to…

Identify	the	scope	of	a	variable.
Identify	common	scope	errors

Assessments	—	Students	will…

Complete	a	worksheet

Homework	—	Students	will…

Read	BJP	2.4	“Pseudocode”
Complete	self-check	questions	31-33	(4 	edition	34-36)
Check	class	notes	for	completion,	adding	daily	summaries	if	needed

Students	may	use	the	book	to	supplement	their	notes	if	needed.

Materials	&	Prep
Projector	and	computer
Whiteboard	and	markers
Classroom	copies	of	WS	2.7

Since	most	of	today’s	lesson	follows	WS	2.7,	you	should	have	read	through	the	worksheet.
You	may	prefer	to	delete	the	notes	from	the	worksheet	(so	it	is	only	a	sheet	of	exercises)	if
you	are	working	on	developing	note-taking	skills	in	your	classroom.	We	recommend	leaving
these	sections	in	for	ELL	classrooms,	so	your	students	can	focus	on	syntax	rules	instead	of
translating	what	they	are	hearing	to	vocabulary	they	need	to	then	write	in	their	notebooks.

Pacing	Guide

th

Lesson	2.07:	Scope	&	Pseudocode

153

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit2/WS%202.7.docx

Section Total	Time

Bell-work	and	attendance 5min

Introduction	to	scope 10min

Worksheet	activity 15min

Introduction	to	pseudocode 5min

Programming	Project	1 20min

Procedure
Scope	is	another	challenging	topic,	so	we’ve	prepared	a	student	handout	that	diagrams
scope.	Encourage	students	to	take	supplemental	notes	in	their	notebook	and	on	the
handout.

Bell-work	and	Attendance	[5	minutes]

Introduction	to	Scope	[10	minutes]

1.	 Using	WS	2.7,	walk	students	through	the	sample	illustration	of	scope	and	scope-related
error.

Before	you	explain	that	brackets	define	scope,	ask	students	to	tell	you	why	they	think
the	error	in	the	example.	They	may	be	able	to	spot	the	scope	from	their	reading	last
night.

2.	 Have	students	copy	the	rules	for	scope	off	the	worksheet	and	into	their	notebooks.
Students	should	head	the	page	“The	4	Commandments	of	Scope,”	and	illustrate,	circle,
highlight,	star,	or	otherwise	emphasize	these	rules	so	they	are	easy	to	find	in	the
notebook	throughout	the	year.

Transcribing	these	notes	is	not	busywork—in	the	ELL	classroom,	this	slows	down
the	pace	and	allows	students	additional	time	to	process	the	language	and	study	the
concepts	conveyed.	This	is	a	good	strategy	for	all	classes	(ELL	or	not)!

At	this	point,	your	class	may	be	raring	to	get	started	on	the	rest	of	the	assignment	without
your	help.	If	they	are,	great!

If	they	are	still	seeming	uncertain	about	how	to	apply	rules	of	scope,	walk	through	Exercise
1a	and	ask	the	class	to	explain	to	you	how/why	you	know	that	scope	a	begins	and	ends
where	it	does.

Lesson	2.07:	Scope	&	Pseudocode

154

Worksheet	Activity	[15	minutes]

1.	 Have	students	work	independently	or	in	pairs	on	WS	2.7.

a.	Remind	students	to	refer	to	their	4	Commandments	when	searching	for	errors.

b.	Play	music	quietly	in	the	background	to	encourage	focus	and	discourage	chatting.

c.	If	students	are	struggling	with	the	exercise,	allow	them	to	pair	up.	Encourage	students
to	trade	papers	and	look	for	errors.

2.	 If	more	25%	or	more	of	the	class	is	struggling,	return	to	whole	group	with	the	stipulation
that	students	who	get	it	may	continue	working	independently.

3.	 Review	answers	as	a	whole	group.	Make	sure	to	call	the	variables	boxed	in	Exercise	1
“local	variables,”	and	ask	students	to	explain	what	makes	them	localized.

Introduction	to	pseudocode	[5	minutes]

Using	an	example	that	was	popular	during	the	last	week	of	class,	show	students	how	to	plan
a	program	using	pseudocode.

Programming	Project	1	[20	minutes]

As	a	class,	begin	planning	a	program	to	answer	Programming	Project	1.

The	challenging	task	of	writing	the	pseudocode	and/or	structure	diagram	(you	should	always
require	one,	both,	or	a	combination	of	the	two)	is	the	most	important	part	of	this	exercise,	so
avoid	the	temptation	of	giving	students	too	much	guidance.

Accommodation	and	Differentiation
It	is	likely	that	students	will	not	finish	the	programming	project	during	class.	You	can	reduce
student	stress	by	setting	the	expectation	that	they	submit	complete	pseudocode	by	the	end
of	class;	not	a	completed	program.	You	may	extend	the	program	for	advanced	students,	and
ask	that	they	submit	an	entire	program	(complete	with	class	header).

Video
BJP	2–5,	Drawing	Complex	Figures	with	for	Loops
http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c2-5

Lesson	2.07:	Scope	&	Pseudocode

155

http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c2-5

CSE	142,	Managing	Complexity:	Problem	Decomposition	and	Pseudocode	(1:58–
16:17)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=3431711f-29f8-43a5-
9855-4d09894ae29d&start=118

CSE	142,	Managing	Complexity:	Nested	Loops	(16:17–37:50)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=3431711f-29f8-43a5-
9855-4d09894ae29d&start=977

CSE	142,	Managing	Complexity:	Class	Constant	(Optional)	(37:51–49:17)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=3431711f-29f8-43a5-
9855-4d09894ae29d&start=977

CSE	142,	Managing	Complexity:	Review	(Optional)	(0:58–21:04)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=26cacdb4-6e47-405f-
a788-912a9a158b41&start=58

Forum	discussion
Lesson	2.07	Scope	&	Pseudocode	(TEALS	Discourse	account	required)

Lesson	2.07:	Scope	&	Pseudocode

156

https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=3431711f-29f8-43a5-9855-4d09894ae29d&start=118
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=3431711f-29f8-43a5-9855-4d09894ae29d&start=977
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=3431711f-29f8-43a5-9855-4d09894ae29d&start=977
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=26cacdb4-6e47-405f-a788-912a9a158b41&start=58
http://forums.tealsk12.org/c/unit-2/2-07-scope-pseudocode

Lesson	2.08	—	Programming	Project

Overview

Objectives	—	Students	will	be	able	to…

Plan	and	construct	a	structured	program	containing	nested	loops.

Assessments	—	Students	will…

Submit	a	complete,	functional	program	by	the	end	of	next	class

Homework	—	Students	will…

Outline	Chapter	2,	omitting	BJP	2.5

Materials	&	Prep
Projector	and	computer	(if	you	are	able	to/opt	to	use	Eclipse	with	your	students)
Student	self-help	system	(such	as	C2B4	or	student	pairing)

Make	sure	you	are	set	up	to	grade	student	notebooks	today.	If	possible,	you	should	only
collect	3	–	5	notebooks	at	a	time	so	students	have	their	notebooks	available	to	reference
during	programming	time.

Pacing	Guide

Section Total	Time

Bell-work	and	attendance 5min

Introduction	&	classroom	procedures 10min

Programming	project 30min

Students	trade	work,	check,	&	submit 10min

Procedure

Lesson	2.08:	Programming	Project

157

To	prepare	students	for	the	upcoming	unit	exam,	the	next	few	class	periods	will	be	devoted
to	reinforcing	concepts	and	applying	the	tools,	procedures,	and	code	that	were	introduced
this	unit.

Bell-work	and	Attendance	[5	minutes]

Introduction	and	Classroom	Procedures	[10	minutes]

1.	 If	your	computer	time	requires	you	to	move	to	another	room	or	to	change	seating,	you
should	teach	and/or	review	those	procedures	before	introducing	the	lab	material.	It’s
been	a	few	weeks	since	the	last	long	form	programming	assignments,	so	make	sure	to
ask	students	what	the	procedures	are	if	they:

have	gotten	stuck	(check	pseudocode	and	structure	diagram),
finished	early	(move	on	to	challenge	questions),	or
can’t	remember	a	coding	rule	or	procedure	(check	your	notes,	worksheets,	and
textbook,	C2B4)

Unless	you	have	had	students	submitting	work	electronically	regularly,	you	should
model	and	review	those	procedures	before	students	begin	work.

2.	 Introduce	the	programming	project,	taking	a	moment	to	talk	strategy	with	your	class.

PROGRAMMING	PROJECT:	Write	a	program	that	produces	the	following	figure	as	its
output	using	nested	for	loops.

	|"""""""""|

		\:::::::/

			\:::::/

				\:::/

					\:/

					/:\

				/:::\

			/:::::\

		/:::::::\

	|"""""""""|

TIPS:	Start	with	a	structure	diagram	or	writing	out	steps	in	English	as	pseudocode.	Try
to	isolate	repeated	tasks	into	methods.	Include	comments	in	with	your	code	so	others
can	easily	understand	what	the	code	is	supposed	to	do.

3.	 Ask	your	class	for	suggestions	as	to	how	to	tackle	this	programming	problem.	Students
should	suggest	drawing	a	structural	diagram,	building	the	program	one	method	at	a	time
(iterative	development),	and	following	the	correction	steps	on	their	personal	algorithms
(debugging).

Lesson	2.08:	Programming	Project

158

Procedural	decomposition	is	hard!	As	a	group,	ask	students	to	discuss	what
components	go	into	drawing	each	line.

What	characteristics	stay	the	same	for	each	line?	(Slashes,	colons,	spaces)
What	characteristics	could	we	use	a	loop	for?
What	might	we	want	to	make	its	own	method	that	we	can	call	more	than	once?

Programming	Project	[30	minutes]

Get	students	started	on	the	ASCII	art	programming	project.	Offer	students	help	after	they
have	tried	to	answer	the	questions	themselves:

a.	Have	the	checked	the	book	for	examples?

b.	Have	they	asked	a	friend	(or	two)	for	help?

If	students	seem	to	be	getting	stuck	on	the	same	segment	of	code,	offer	a	hint	or	tip	on	the
board	(silently,	without	disrupting	student	flow).

If	the	entire	class	is	stuck,	return	to	whole	group	and	work	through	the	programming
challenge	together	as	a	class,	having	students	offer	an	increasing	proportion	of	the	answers
as	you	move	along.

Students	trade	work,	check,	and	turn	in	[5	minutes]

At	the	end	of	class,	have	students	look	over	each	other’s	projects	before	submitting.

Accommodation	and	Differentiation
If	you	have	students	who	are	speeding	through	this	project,	you	should	encourage	them	to:

Finish	the	programming	project	started	in	class	yesterday.
Act	as	student	TAs	and	help	struggling	classmates	(NOTE:	you	should	specifically	direct
students	NOT	to	give	answers,	but	to	help	students	think	of	ideas	on	their	own.)

If	you	have	students	that	are	struggling	during	this	class	(and	you	will),	resist	the	urge	to
help	students	too	much	at	this	stage.	Ask	leading	questions,	direct	students	to	their	notes,	or
an	example	that	demonstrates	a	similar	solution,	but	don’t	give	students	the	answer	here.
Resilience/grit	is	an	important	emotional	tool	for	solving	complex	programming	problems:	the
emotional	journey	students	take	during	these	difficult	programming	problems	is	as	important
as	the	actual	coding	challenge.

If	students	are	having	trouble	due	to	language,	pair	students	up	so	those	with	more
advanced	English	can	help	those	that	are	emergent	language	learners.

Lesson	2.08:	Programming	Project

159

Forum	discussion
Lesson	2.08	Programming	Project	(TEALS	Discourse	account	required)

Lesson	2.08:	Programming	Project

160

http://forums.tealsk12.org/c/unit-2/2-08-programming-project

Lesson	2.09	—	Programming	Project

Overview

Objectives	—	Students	will	be	able	to…

Plan	and	construct	a	structured	program	containing	nested	loops.

Assessments	—	Students	will…

Submit	a	complete,	functional	program	by	the	end	of	class.

Homework	—	Students	will…

Complete	practice	questions	with	class	constants

Materials	&	Prep
Projector	and	computer	(if	you	are	able	to/opt	to	use	Eclipse	with	your	students)
Student	self-help	system	(such	as	C2B4	or	student	pairing)

Today	is	day	2	of	the	programming	project;	be	sure	to	remind	students	that	they	only	have
the	first	30	minutes	of	class	to	finish	and	submit	their	program.	Be	prepared	to	review	the
correct	code	and	offer	an	upgrade	using	class	constants	for	the	second	half	of	class.

If	you	have	not	finished	grading	notebooks,	make	sure	you	are	set	up	to	grade	student
notebooks	today.	If	possible,	you	should	only	collect	3–5	notebooks	at	a	time	so	students
have	their	notebooks	available	to	reference	during	programming	time.

Pacing	Guide

Section Total	Time

Bell-work	and	attendance 5min

Programming	project 30min

Introduction	to	class	constants 10min

Students	update	their	code 10min

Lesson	2.09:	Programming	Project

161

Procedure
Today’s	lesson	will	be	a	combination	of	drilling	the	parts	of	a	basic	program,	and	conditioning
students	to	check	for	common	errors.	To	hook	your	class,	have	pictures	of	punch	cards	and
punch	card	readers	up	when	students	enter.	If	possible,	have	physical	punch	cards	available
to	pass	around	the	room	for	tactile	learners	as	you	explain	the	origins	of	the	phrase	“bug”
and	“debugging.”

Bell-work	and	Attendance	[5	minutes]

Programming	Project	[30	minutes]

Have	students	continue	the	programming	project,	aiming	to	finish	with	about	ten	minutes	left
in	class.

Introduction	to	Class	Constants	[10	minutes]

1.	 Present	on	a	board	or	projector	a	complete	Java	class	that	solves	the	programming
project.	Ideally,	this	would	be	a	student	solution.	Walk	the	class	through	the	solution,
having	students	help	you	trace	the	flow	of	control	and	predicting	output	to	confirm	that
the	program	works.

Ask	students	what	they	would	need	to	change	in	order	to	make	the	hour	glass	X
units	larger.	Only	change	the	values	that	students	specify	in	order	to	drive	home	the
idea	that	many	values	in	the	for	loop	termination	must	be	updated.

Suggest	that	there	might	be	an	easier	way	to	update	all	of	these	values	at	once,
and	introduce	class	constants.

2.	 Trace	or	run	the	program	with	the	updated	class	constants	to	demonstrate	that	this
does	indeed	work.

3.	 If	you	are	running	the	program	in	Eclipse,	show	that	you	can	easily	change	the
constants.	Change	the	values	several	times,	running	the	program	each	time	to	drive	this
home.

Students	Update	Their	Code	[10	minutes]

Give	students	time	to	update	their	project	code,	now	including	class	constants.

Accommodation	and	Differentiation

Lesson	2.09:	Programming	Project

162

If	you	have	students	who	are	speeding	through	this	project,	you	should	encourage	them	to
act	as	student	TAs	and	help	struggling	classmates	(NOTE:	you	should	specifically	direct
students	NOT	to	give	answers,	but	to	help	students	think	of	ideas	on	their	own.)

If	you	have	students	that	are	struggling	during	this	class	(and	you	will),	resist	the	urge	to
help	students	too	much	at	this	stage.	Ask	leading	questions,	direct	students	to	their	notes,	or
an	example	that	demonstrates	a	similar	solution,	but	don’t	give	students	the	answer	here.
Resilience/grit	is	an	important	emotional	tool	for	solving	complex	programming	problems:	the
emotional	journey	students	take	during	these	difficult	programming	problems	is	as	important
as	the	actual	coding	challenge.

If	students	are	having	trouble	due	to	language,	pair	students	up	so	those	with	more
advanced	English	can	help	those	that	are	emergent	language	learners.

Forum	discussion
Lesson	2.09	Programming	Project	(TEALS	Discourse	account	required)

Lesson	2.09:	Programming	Project

163

http://forums.tealsk12.org/c/unit-2/2-08-programming-project

Lesson	2.10	—	Finding	&	Fixing	Errors

Overview

Objectives	—	Students	will	be	able	to…

Find	errors	in	their	returned	homework	assignments.
Correct	their	code

Assessments	—	Students	will…

Re-submit	all	homework	assignments	with	corrected	answers.

Homework	—	Students	will…

Study	for	the	test	by:
Reviewing	all	the	blue	pages	at	the	end	of	Chapter	2
Re-reading	sections	as	needed

Submit	5	questions	for	review	in	class	tomorrow	using	electronic	survey

Materials	&	Prep
Any	student	homework	assignments	that	you	have	not	yet	returned
Student	self-help	system	(such	as	C2B4	or	student	pairing)
Electronic	survey	for	student	review	requests

When	you	grade	homework	assignments,	it	will	be	most	useful	to	these	lessons	if	you	only
mark	an	answer	incorrect	or	correct.	ELL	classrooms	are	the	exception	to	this	rule—
students	will	be	having	a	hard	enough	time	just	reading	the	material;	you	can	speed	along
their	processing	by	correcting	one	example,	then	having	them	look	for	similar	errors	with	that
example.

The	homework	tonight	asks	students	to	submit	5	questions	for	review.	Create	an	electronic
survey	for	students	to	complete	with	6	text	fields,	one	for	name,	and	5	for	questions	they
have	about	Ch.	2	content.	Set	a	time-deadline	(e.g.	10pm)	by	which	time	students	must
have	submitted	5	questions	from	Ch.2	that	they	would	like	to	see	reviewed	in	tomorrow’s
class.	If	students	do	not	have	questions,	stipulate	that	they	still	have	to	submit	something	to
receive	credit,	even	if	it	is	only	questions	they	think	other	students	may	have.

Lesson	2.10:	Finding	&	Fixing	Errors

164

Pacing	Guide

Section Total	Time

Bell-work	and	attendance 5min

Introduction	and	homework	distribution 5min

Student	work 35min

Students	trade	work,	check,	and	submit 10min

Procedure
Today	we	continue	reinforcing	concepts	and	applying	the	tools,	procedures,	and	code	that
were	introduced	last	week.	Students	will	have	the	opportunity	to	correct	any	incorrect
homework	assignments.	If	students	did	not	have	time	to	finish	the	programming	projects
from	yesterday,	you	may	allow	them	time	to	work	on	those	projects	today.

This	is	a	good	day	to	loosen	up	the	vibe	in	the	classroom	a	bit.	Try	playing	music	softly	in
the	background	to	encourage	students	to	relax	and	focus	on	spotting	errors.	Try	to	avoid
loud,	rhythmic	music,	and	avoid	the	pitfall	of	allowing	students	to	select	the	station!

Bell-work	and	Attendance	[5	minutes]

Introduction	and	Homework	Distribution	[5	minutes]

1.	 Return	student	homework	packets,	or	have	students	place	their	returned	homeworks	in
a	pile	on	their	desk.

2.	 Explain	to	students	that	they	have	the	opportunity	to	get	full	credit	on	their	homework
grades	by	correcting	them	now,	in	class.	Ask	students	for	suggestions/ideas	on	how	to
make	sure	they	don’t	miss	any	errors.

a.	By	now	students	should	be	used	to	relying	on	their	error	checklist/algorithm.

b.	Hopefully,	students	suggest	using	the	4	Commandments	of	Scope,	creating
pseudocode	and/or	structure	diagrams	to	clarify	thinking	on	program	structure,	and
checking	their	notes	and	the	text	book.

Student	Work	[35	minutes]

Have	students	work	individually	to	correct	their	homework	grades.

Lesson	2.10:	Finding	&	Fixing	Errors

165

Offer	time	checks	for	students	so	they	stay	on	task.

If	students	have	not	finished	their	programming	project	from	yesterday’s	class,	allow
them	to	do	so	today.

Students	trade	work,	check,	and	turn	in	[10	minutes]

At	the	end	of	class,	have	students	trade	their	homework	assignments	to	evaluate	each
other’s	corrections	before	submission.

Accommodation	and	Differentiation
If	you	have	students	who	are	speeding	through	this	lesson,	you	should	encourage	them	to
tackle	programming	project	2	&	3	in	the	text	book.

If	you	were	unable	to	finish	grading	student	notebooks	yesterday,	finish	them	today	while
students	are	working.	Return	notebooks	by	the	end	of	class	so	students	may	use	them	to
study	for	the	exam.

Forum	discussion
Lesson	2.10	Finding	&	Fixing	Errors	(TEALS	Discourse	account	required)

Lesson	2.10:	Finding	&	Fixing	Errors

166

http://forums.tealsk12.org/c/unit-2/2-10-finding-fixing-errors

Lesson	2.11	—	Review

Overview

Objectives	—	Students	will	be	able	to…

Identify	weaknesses	in	their	Unit	2	knowledge.

Assessments	—	Students	will…

Create	a	personalized	list	of	review	topics	to	guide	tonight’s	study	session.

Homework	—	Students	will…

Study	for	tomorrow’s	test!

Materials	&	Prep
Projector	and	computer
Whiteboard	and	marker
Results	from	electronic	survey	of	review	topics
Classroom	copies	of	the	practice	test	WS	2.11

Once	students	have	submitted	their	review	requests,	assemble	those	topics	into	categories
and	prepare	to	re-teach	the	topics	as	needed.

Pacing	Guide

Section Total	Time

Bell-work	and	attendance 5min

Introduction	and	test	format	orientation 15min

Test	review 30min

Check	student	study	lists 5min

Lesson	2.11:	Review

167

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit2/WS%202.11.docx

Procedure
Engage	the	class	in	the	review	session	by	pointing	out	that	your	review	topics	have	been
hand	selected	by	the	class.	Explain	that	you	will	review	test-taking	strategies	in	addition	to
reviewing	subject	matter.

Bell-work	and	Attendance	[5	minutes]

Introduction	and	Test	Format	Orientation	[15	minutes]

1.	 Clearly	indicate	that	you	expect	all	students	to	have	a	list	of	review	topics	to	study	this
evening.	Periodically	remind	students	that	this	list	will	be	checked	at	the	end	of	class.

2.	 Students	should	already	be	familiar	with	the	sections	of	the	test,	but	it	doesn’t	hurt	to
have	students	re-read	the	directions.

3.	 Work	through	the	sample	problems	on	the	test	as	a	way	of	reviewing	topics,	and	answer
any	questions	that	students	bring	up	as	you	go.

Test	Review	[30	minutes]

1.	 Using	the	results	from	the	electronic	survey,	address	the	various	review	topics,
prioritizing	questions	that	popped	up	the	most.

a.	Some	questions	you	may	already	have	addressed	while	working	through	the	sample
test.

b.	Be	ready	for	additional	questions	to	pop	up	as	you	go.	Save	yourself	the	work	and
use	old	homework	questions	and	student-generated	test	questions	as	examples	to	work
through.

c.	Jot	down	notes	about	which	topics	you	covered	in	review	so	you	can	adjust	the	exam
to	reflect	the	topics	your	students	have	learned.

2.	 Use	a	combination	of	group-solving	questions	on	the	whiteboard,	think-pair-share,	and
timed-response	as	review	strategies.

3.	 After	you’ve	completed	reviewing	an	idea,	remind	the	class	that	they	should	write	down
that	topic	if	they	feel	they	still	have	to	review	it	tonight.	(Yes,	this	will	be	a	reminder
every	few	minutes,	but	it	will	pay	off	later	when	students	start	creating	review	lists
without	prompting	later	in	the	year!)

Check	student	study	lists	[5	minutes]

Lesson	2.11:	Review

168

Spend	the	last	5	minutes	of	class	checking	each	student’s	review	topic	list.

Accommodation	and	Differentiation
In	ELL	classes,	you	may	want	to	change	code-writing	questions	to	Parsons	Problems.
Educational	research	shows	a	high	correlation	between	Parsons	scores	and	code	writing
scores,	and	a	low	correlation	between	code	writing	and	tracing	and	between	Parsons	and
tracing.	(In	other	words,	Parsons	Problems	accurately	assess	a	students’	ability	to	create
code.)	For	more	information	on	Parsons	Problems,	check	out	this	paper
(https://cseweb.ucsd.edu/classes/fa08/cse599/denny.pdf).

Even	in	a	non-ELL	class,	you	may	want	to	change	some	Section	II	questions	to	Parsons
problems	because	(1)	grading	the	questions	is	easier,	since	logic	and	syntax	errors	are	easy
to	discern,	and	(2)	students	challenged	by	language	processing	are	able	to	more	quickly
complete	the	problem.

If	your	students	are	easily	completing	the	programming	projects	in	the	week	leading	to	the
test,	you	may	want	to	edit	the	test	by	deleting	the	“fill	in	the	blanks”	and	leaving	empty
space.

Forum	discussion
Lesson	2.11	Unit	2	Review	(TEALS	Discourse	account	required)

Lesson	2.11:	Review

169

https://cseweb.ucsd.edu/classes/fa08/cse599/denny.pdf
http://forums.tealsk12.org/c/unit-2/2-11-review

Lesson	3.00	—	Test	Review	&	Reteach

Overview

Objectives	—	Students	will	be	able	to…

Re-learn	or	strengthen	content	knowledge	and	skills	from	Unit	2.

Assessments	—	Students	will…

Re-submit	test	answers	with	updated	corrections	for	partial	or	full	credit
Credit	depends	on	instructor	preference

Homework	—	Students	will…

Read	BJP	3.1	up	to	“Limitations	of	Parameters”
Correct	any	incorrect	test	answers	by	re-answering	on	a	separate	sheet	of	paper

To	get	back	credit,	they	must	justify	their	new	answers
Staple	new	answer	sheet	to	old	test	and	turn	in	tomorrow

Materials	&	Prep
Projector	and	computer
Whiteboard	and	markers
Corrected	student	tests
Student	grades	(posted	online,	emailed	to	students,	or	handed	back	on	paper	in	class)
Digital	copy	of	test	questions	for	projector

Pacing	Guide

Section Total	Time

Bell-work	and	attendance 5min

Class	discussion	(if	needed) 10min

Test	review	and	reteach 35min

Check	student	notes	and	return	tests 5min

Lesson	3.00:	Test	Review	&	Reteach

170

Procedure
Return	student	grades	before	class	begins	or	while	students	are	completing	the	bellwork.

Do	not	return	students’	tests	before	the	review	session,	since	you	want	to	motivate	students
to	pay	attention	to	the	entire	review,	taking	supplemental	notes	the	entire	time.

Bell-work	and	Attendance	[5	minutes]

Class	Discussion	(if	needed)	[10	minutes]

1.	 If	grades	are	low,	invite	the	class	to	a	discussion	of	what	can	be	improved.	Begin	with
student	complaints	and	suggestions	to	build	student	buy-in.	Ask	students:

how	they	felt	they	were	going	to	do	before	the	test
what	surprised	them	once	they	were	taking	the	test
what	they	felt	worked	in	the	first	unit	(lessons,	review	strategies,	assignments)
what	do	they	think	they	want	to	change	for	the	second	unit

2.	 Once	you	feel	that	a	dialogue	has	been	established,	validate	students’	feelings,	then
challenge	them	(e.g.	AP	courses	are	stressful,	but	this	is	good	practice	for	college,
where	the	pace	is	faster	and	professors	don’t	give	personalized	instruction).	In	a	non-
judgmental,	supportive	tone,	remind	students	that	to	be	successful	in	the	course:

Reading	is	mandatory
Homework	is	mandatory	(And	valuable!	You	will	never	assign	“busy”	work.)
To	better	manage	their	time,	students	should	plan	for	1	hour	of	homework	a
weeknight,	with	up	to	2	hours	of	homework	each	weekend.	If	this	seems
impossible,	they	should	meet	with	you	or	their	guidance	counselor	to	assess
whether	they	can	fit	in	an	AP	class	at	this	time.
It	is	VERY	important	to	keep	your	tone	sympathetic	at	this	point—an	overworked,
overstressed,	underperforming	student	will	slow	your	entire	class	down,	and	color
that	student	against	CS	for	the	future!

Test	Review	and	Reteach	[30	minutes]

1.	 Walk	the	students	through	each	question	on	the	test,	glossing	over	questions	that
everyone	answered	correctly.

a.	You	can	ask	for	students	to	volunteer	answers,	or	call	on	students	randomly.	Make
sure	that	students	explain	their	logic	when	they	answer.	If	a	student	gives	an	incorrect
answer,	the	explanation	will	tell	you	what	you	need	to	re-teach	or	clarify.

Lesson	3.00:	Test	Review	&	Reteach

171

b.	Do	not	skip	questions	that	everyone	answered	correctly,	but	do	not	spend	more	than
the	time	it	takes	to	read	the	question,	and	congratulate	students’	correct	answers.

2.	 Project	a	copy	of	each	question	as	you	review—this	will	help	students	recall	the
question/process	the	information.

3.	 Make	sure	that	students	are	taking	notes	during	the	re-teach,	reminding	students	that
for	homework,	they	will	have	an	opportunity	to	win	back	some	of	the	points	on	their
exam.

4.	 For	Section	II	questions,	select	a	sample	of	student	work	(with	any	identifying
information	obscured),	and	work	through	the	answer	together	as	a	class.

Check	student	notes	and	return	tests	[5	minutes]

At	the	end	of	class,	check	student	notes,	and	return	the	tests	in	hard	copy	form	if	applicable.

Accommodation	and	Differentiation
If	students’	grades	are	suffering	because	the	reading	assignments	are	taking	them	too	long,
you	have	a	few	options	(some	more	drastic	than	others):

Set	aside	classroom	time	to	read	through	the	assignment	before	students	leave.

Give	students	the	lines	of	code	needed	to	complete	assignments,	but	in	jumbled	order.
Have	students	rearrange	the	lines	of	code	into	the	proper	program	(this	is	called	a
Parsons	Problem).

Flip	your	classroom:	record	your	lectures,	and	have	students	watch	them	and	take
notes	for	homework.	Any	classwork	drills	or	worksheets	can	be	distributed	for
“homework,”	and	the	more	complicated	assignments	that	would	normally	be	done	at
home,	can	be	completed	with	your	help	when	they	come	to	class.

If	students	don’t	have	a	computer	to	work	on	Practice-It	problems	at	home,	create
printed-out	sheets	instead	that	students	can	write	code	onto.	Class	time	should	then	be
filled	with	reading	assignments,	and	more	complicated	coding	practice	so	that	you	are
available	to	tutor	as	needed.

Encourage	advanced	students	to	take	on	additional	programming	challenges.	One	easy
way	to	do	this	is	to	assign	Programming	Projects	from	the	blue	pages	at	the	end	of	each
Chapter.	A	more	open-ended	(and	more	interesting)	challenge	would	be	to	have

Lesson	3.00:	Test	Review	&	Reteach

172

students	flesh-out	additional	sections	of	a	larger,	year-round	Pokémon-esque	game.	For
each	concept	you	learn,	ask	your	advanced	students	to	think	of	a	feature	or	sequence
from	the	game	that	can	be	programmed	using	the	tools	they’ve	acquired.

Encourage	students	to	carefully	name	their	files,	and	leave	lots	of	comments	so	they
can	use	the	code	later	in	the	year	to	put	the	game	together.

Forum	discussion
Lesson	3.00	Test	Review	&	Reteach	(TEALS	Discourse	account	required)

Lesson	3.00:	Test	Review	&	Reteach

173

http://forums.tealsk12.org/c/unit-3/3-00-test-review-reteach

Lesson	3.01	—	Parameters

Overview

Objectives	—	Students	will	be	able	to…

Correctly	construct	formal	and	actual	parameters	(arguments).
Predict	output	of	programs	that	use	parameters

Assessments	—	Students	will…

Teach	a	mini-lesson	explaining	the	relationship	between	parameters	and	values
Submit	Practice-It	questions

Homework	—	Students	will…

Read	BJP	3.1	“Limitations	of	Parameters”	and	“Multiple	Parameters”
Complete	self-check	questions	4-7

Materials	&	Prep
Projector	and	computer
Whiteboard	and	markers
Assignments	for	5	student	groups
GIF	of	software	development	gone	awry
(https://g.redditmedia.com/tPgaGgDXL0yZyLe_4pjr1ZO2_qpIOk8t5eopSErOwVk.gif?
w=320&s=c5345cd1b395f874f92f51e2509e97ae)

Pacing	Guide

Lesson	3.01:	Parameters

174

https://g.redditmedia.com/tPgaGgDXL0yZyLe_4pjr1ZO2_qpIOk8t5eopSErOwVk.gif?w=320&s=c5345cd1b395f874f92f51e2509e97ae

Section Total	Time

Bell-work	and	attendance 5min

Instruction 15min

Student	mini-lesson	preparation 10min

Student	mini-lesson	delivery 10min

Practice-It	Activity 10min

Procedure
Your	hook	for	today	is	an	example	of	what	happens	when	we	don’t	stay	flexible	with	our
programming.	Have	the	gif	up	and	looping,	and	explain	that	this	image	is	an	illustration	of
what	can	happen	to	our	programs	if	we	don’t	make	them	adaptable.

Bell-work	and	Attendance	[5	minutes]

Instruction	[15	minutes]

1.	 Begin	class	with	a	lecture/discussion	that	introduces	parameters

Part	of	the	reasons	that	humans	are	so	good	at	solving	new	problems	is	that	they
generalize	the	solution	to	whole	categories	of	problems.

The	book	gives	an	example	of	walking	as	a	generalizable	task—walking	20	steps
and	walking	10	steps	can	be	described	as	the	task	of	“walking	forward,”	and	the
part	that	varies	(we	call	this	a	parameter)	is	the	number	of	steps.

In	programming,	when	we	make	code	flexible	by	“parameterizing”	parts	of	the
task	that	are	likely	to	change,	we	end	up	with	programs	that	are	shorter,	easier
to	understand	for	other	coders,	better	organized,	and	reusable.

Imagine	how	difficult	life	would	be	if	you	had	to	separately	learn	all	the
movements	required	to	walk	10	steps	down	that	runway	in	addition	to	the
procedure	for	walking	20	steps	it	takes	to	get	to	the	stage?	Instead,	your
brain	computes	a	general	rule	something	like	“walk	only	the	number	of
steps	to	the	next	obstacle,”	then	(ideally)	your	eyes	and	ears	input	how
many	steps	that	should	be.

Java	is	the	same	way—it	takes	less	memory	and	computing	power	to
execute	a	program	if	you	write	code	that	is	flexible/reusable	with	different
parameters.	(In	fact,	in	this	chapter	we’re	going	to	learn	how	to	use	user

Lesson	3.01:	Parameters

175

input—like	the	information	we	get	from	our	eyes	and	ears—to	influence
the	behavior	of	the	programs	we	write!)

What	are	some	other	behaviors	that	we	“parameterize”	every	day?	(If	students
need	help	getting	started,	suggest:

Braiding	hair:	different	heads	require	a	different	number	of	braids,	but	the
braiding	is	always	the	same	procedure.

Turning	on	the	stereo	or	TV:	the	methods	to	turn	on	the	TV,	radio,	or
stereo	are	always	the	same,	but	you	adjust	the	volume	to	different	levels
depending	on	the	time	of	day.	What	would	the	parameters	be	in	this
example?	(Time,	volume)

2.	 If	your	students	had	a	problem	from	the	last	couple	of	weeks	that	drove	them	crazy,	use
that	example	instead,	since	they’ll	already	have	a	clear	memory	of	it.	Otherwise,	review
this	programming	example	from	the	book:

In	the	last	chapter,	we	inserted	spaces	into	a	drawing	by	calling	a	method:

writeSpaces();

If	we	wanted	to	tell	method	writeSpaces	to	output	10	spaces,	we	might	decide	to
declare	a	variable:

int	number	=	10;		//	Can	anyone	explain	why	this	won't	work?

writeSpaces();

→	This	won’t	work	because		number	’s	scope	is	outside	the		writeSpaces		method.

Instead	we	parameterize	the	number	of	spaces	by	changing	the	method	header	as
highlighted	below	(this	used	to	be	empty	parentheses,	remember?)

public	static	void	writeSpaces	(int	number)	{

				for	(int	i	=	1;	i	<=	number;	i++)	{

								System.out.print("	");

				}

}

Now	when	we	call	the	method,	we	can	(and	must!)	include	the	parameterized
value:

Lesson	3.01:	Parameters

176

writeSpaces(10);

writeSpaces();										//	ERROR:	No	parameter	specified

writeSpaces(24901);

writeSpaces(9/3-2);

On	the	board	or	in	Eclipse,	point	out	the	difference	between	an	actual	parameter
(argument)	and	a	formal	parameter	(or	just	“parameter”).	Point	to	a	few	different
examples	of	each	on	sample	code,	asking	students	which	one	is	which,	and	how
they	know.

Student	Mini-Lesson	Preparation	[10	minutes]

1.	 Students	are	going	to	get	a	chance	to	teach	the	second	half	of	class—the	mechanics	of
parameters.	Assign	each	group	one	section	of	the	sample	code	in	section	3.1
“Mechanics	of	Parameters.”

Student	groups	should	take	10	minutes	to	review	the	program,	read	the	example	on	the
pages	following	the	example,	then	figure	out	how	they	want	to	explain	to	class	what
values	are	being	stored	in	the	computer’s	memory.

2.	 On	the	board	or	overhead,	give	students	a	few	things	they	should	consider	in	planning
their	mini	lesson:

a.	Who	is	going	to	speak	when?

b.	How	are	you	going	to	illustrate	the	flow	of	control?

c.	What	do	you	need	to	have	up	on	the	board	to	illustrate	your	mini-lesson,	and	who	is
in	charge	of	writing	it	out?

d.	Where	and	how	will	you	feature	the	output	produced	by	your	code	segment?

Student	Mini-Lesson	Delivery	[10	minutes]

Have	student	groups	sequentially	teach	through	the	example	in	the	book,	demonstrating	the
changes	to	the	stored	value,	predicting	output,	and	tracing	the	flow	of	control.

Practice-It	Activity	(if	needed)	[10	minutes]

If	the	majority	of	students	are	understanding	the	content,	allow	students	to	work	individually
on	Practice-It	self-check	problems:

a.	methodHeaderSyntax	b.	MysteryNums	c.	Oops3-errors

Lesson	3.01:	Parameters

177

Accommodation	and	Differentiation
If	students	are	struggling	with	content,	you	might	opt	to	work	on	Practice-It	in	a	whole	group
setting.	In	some	classes,	the	teaching	exercise	might	take	an	entire	class	period.

To	keep	from	losing	too	much	instructional	time,	remind	students	of	their	presentation
time	limit	while	they	are	planning,	and	during	their	presentation.

Check	students	as	they	are	coordinating	their	mini-lesson;	offer	feedback	on	the	timing
of	their	lesson.

Use	a	timer	during	student	lessons,	and	hold	up	a	“1	minute”	warning	sign	to	keep
students	on	pace.	This	can	become	a	fun/silly	challenge	if	that	suits	your	teaching	style.
Use	a	buzzer	or	gong	to	keep	the	lessons	on	schedule	in	a	non	stressful	way.

If	students	are	speeding	through	the	content,	encourage	them	to	complete	one	of	the
following	projects	(depending	on	how	much	time	is	available):

Create	a	poster	for	the	classroom	that	diagrams/illustrates	how	to	correctly
parameterize	a	method.

Tackle	Ch.3	Programming	Project	#1	for	extra	credit.	(This	might	be	completed	over	the
course	of	several	days.)

Misconceptions
When	passing	parameters	to	methods,	students	may	include	the	type	when	the
parameter	is	a	variable:		whiteSpace	(int	x);	.	The	student	may	be	pattern	matching
method	declaration	with	method	invocation.

Video
BJP	3–1,	Mechanics	of	Parameters
http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c3-1

CSE	142,	Single	Parameters	(21:05-33:05)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=26cacdb4-6e47-405f-
a788-912a9a158b41&start=1265

CSE	142,	Multiple	Parameters	(33:06-50:0)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=26cacdb4-6e47-405f-
a788-912a9a158b41&start=1985

Lesson	3.01:	Parameters

178

http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c3-1
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=26cacdb4-6e47-405f-a788-912a9a158b41&start=1265
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=26cacdb4-6e47-405f-a788-912a9a158b41&start=1985

CS	Homework	Bytes,	Functions	and	Parameters,	with	Komal
https://www.youtube.com/watch?v=UuZCQWErV-A

Forum	discussion
Lesson	3.01	Parameters	(TEALS	Discourse	account	required)

Lesson	3.01:	Parameters

179

https://www.youtube.com/watch?v=UuZCQWErV-A
http://forums.tealsk12.org/c/unit-3/3-01-parameters

Lesson	3.02	—	Limitations	of	Parameters
&	Multiple	Parameters

Overview

Objectives	—	Students	will	be	able	to…

Modify	programs	using	parameters	and	class	constants	to	create	original	artworks.

Assessments	—	Students	will…

Complete	an	art	project	and	“artist	statement”	justifying	their	programming	choices

Homework	—	Students	will…

Read	BJP	3.1	“Parameters	versus	Constants”	and	“Overloading	Methods”
Jazz	up	art	projects	and	programs

Materials	&	Prep
Projector	and	computer
Whiteboard	and	markers
Sample	of	final	project	(picture,	artist	statement,	code)
Pictures	from	previous	year’s	“gallery	opening”
Ball	for	passing	flow	of	control

Around	this	time	of	year,	many	schools	have	open	houses	and/or	parent-teacher
conferences.	If	you	have	the	time	and	resources,	this	programming	project	is	a	excellent
opportunity	for	students	to	showcase	their	work	for	parents,	principals,	superintendents,	etc.
For	instructions	on	using	this	lesson	as	an	opportunity	to	share	student	work,	refer	to
Accommodation	&	Differentiation	at	the	end	of	this	lesson	plan.

If	this	is	your	first	year	teaching	this	lesson,	you	obviously	won’t	have	pictures	from	previous
years	events.	Make	sure	to	document	this	lesson	for	future	years	so	you	can	hook	students
with	the	glamor	and	excitement	of	an	art	gallery	opening.

Pacing	Guide

Lesson	3.02:	Limitations	of	Parameters	&	Multiple	Parameters

180

Section Total	Time

Bell-work	and	attendance 5min

Review	and	intro	to	multiple	parameters 15min

Student	practice 30min

Procedure
Hook	your	students	by	showing	an	example	of	a	completed	art	project,	statement,	and	code
sample.	If	you	don’t	have	previous	work	to	share	with	students,	show	them	some	samples	of
ASCII	art	and	ask	students	to	predict	how	many	lines	of	code	they’d	need	to	design	the
images.

Bell-work	and	Attendance	[5	minutes]

Review	and	Introduction	to	Multiple	Parameters	[15
minutes]

1.	 If	you	will	be	holding	a	reception	for	student	art	(see	end	of	lesson	for	details),
announce	that	now.	Segue	into	today’s	lesson	by	explaining	that	you’re	going	to	give
students	a	few	additional	tools	to	use	in	their	art	project.	Give	them	a	quick	recap/review
before	teaching	multiple	parameters:

Call	students	up	to	the	board—some	to	help	you	demonstrate	flow	of	control,
another	to	produce	console	output	on	the	whiteboard.

Using	the	example	below,	review	the	flow	of	control	by	having	the	students	(main
and	parameter)	pass	information	to	you	(the	method).	Have	the	class	direct	your
other	student	what	output	to	write	on	the	board.	Ask	students	what	variable	x	is
throughout	the	example	to	drive	home	the	idea	that	parameters	don’t	change	value
when	the	method	changes	a	local	value.

Lesson	3.02:	Limitations	of	Parameters	&	Multiple	Parameters

181

public	class	ParameterExample	{

				public	static	void	main	(String[]	args)	{

								int	x	=	17;

								doubleNumber(x);

								System.out.println("x	=	"	+	x);

								System.out.println();

								int	number	=	42;

								doubleNumber(number);

								System.out.println("number	=	"	+	number);

				}

				public	static	void	doubleNumber	(int	number)	{

								System.out.println("Initial	value	=	"	+	number);

								number	=	number	*	2;

								System.out.println("Final	value	=	"	+	number);

				}

}

It	is	possible	to	declare	multiple	parameters!	The	trick	is	to	always	make	sure	your
method	accepts	the	parameters	in	the	same	order.	When	calling	the	method,	pass
the	parameters	in	the	same	order	in	which	they	were	declared.

public	static	<type>	<name>	(<type>	<name>,	<type>	<name>	…	<type>	<name>)	{

				<statement>;

				<statement>;

				…

				<statement>;

}

2.	 Using	the	diagram	below,	walk	students	through	this	coding	example.	You	should	have
students	draw,	circle,	and	explain	the	parts	of	the	code	in	their	own	notebooks	so	they
have	a	chance	to	think	this	through.

Lesson	3.02:	Limitations	of	Parameters	&	Multiple	Parameters

182

public	static	void	main	(String	[]	args)	{

				writeChars	('=',	20);		//-----------------	Writes	a	line	of	20	='s

				System.out.println();		//-----------------	Returns	to	the	next	line

				for	(int	i	=	1;	i	<=	10;	i++)	{		//-------	For	10	lines	of	picture	(height)

								writeChars('>',	i);										//-------	Increase	the	number	of	'>'s	in	each

	line

								writeChars('	',	20	-	2*i);			//-------	Decrease	the	number	of	spaces	in	ea

ch	line

								writeChars('<',	i);										//-------	Increase	the	number	of	'<'s	in	each

	line

								System.out.println();								//-------	Go	to	the	next	line	before	starting

	the	body

				}																																//								of	the	loop	again.

}

public	static	void	writeChars	(char	ch,	int	number)	{

				for	(int	i	=	1;	i	<=	number;	i++)	{

								System.out.print(ch);

				}

}

Have	students	predict	how	the	output	will	change	if	you	change	1	or	2	things	in	the
code,	then	allow	them	to	start	their	open-ended	activity.

Student	Practice	[30	minutes]

1.	 Encourage	students	to	spend	a	few	minutes	fiddling	with	the	code	we	reviewed	in	class
to	see	how	it	changes	the	outputted	image.	It’s	really	important	that	students	have	time
and	space	to	fiddle	with	code	to	understand	how	the	different	parts	relate.	Encourage
students	to	start	with	this	code	and	build	from	it/change	it	to	make	whatever	images
they	want	to	make	for	their	final	project.

2.	 Instruct	students	that	they	will	need	to	create	a	design	that	uses	parameters,	loops,
and/or	nested	loops.	Extra	points	will	be	awarded	for	particularly	complex/creative
images.

3.	 They	should	use	(and	keep	copies	of)	a	structure	diagram	and/or	pseudocode	for	their
own	records,	since	they	will	be	expected	to	write	a	short	paragraph	explaining	in	plain
English	(or	their	native	tongue).

4.	 They	are	allowed	to	continue	working	on	this	project	outside	of	class:	you	have
graciously	decided	not	to	assign	problems	for	homework	tonight	so	that	they	will	have
time	to	work	on	the	code.

Lesson	3.02:	Limitations	of	Parameters	&	Multiple	Parameters

183

If	you	find	that	students	are	highly	engaged	in	the	project,	you	might	opt	to	extend	this
lesson	to	a	2	period	coding	session.	The	more	opportunity	students	have	to	manipulate	code
and	check	output,	the	more	intuition	they	will	have	down	the	road	as	they	internalize	what
individual	pieces	of	code	mean.

Accommodation	and	Differentiation
If	you	feel	that	students	need	the	extra	review,	ask	students	to	help	you	build	the	example
program	you	use	during	the	introduction	of	class.	Do	this	as	a	whole	group	to	keep	class	on
pace,	and	write	only	the	information	that	students	give	you	(i.e.	let	mistakes	happen,	then
guide	the	class	to	error-check	their	own	work).

If	students	are	having	a	hard	time	with	the	coding	project,	you	may	encourage	them	to	work
in	pairs	instead	of	as	individuals.	If	some	of	your	class	partners	up,	make	sure	that	the	class
understands	that	teams	will	be	expected	to	write	more	complex	images	than	those	created
by	students	working	alone.

Encourage	students	to	think	about	their	learning	and	coding	processes	by	having	students
articulate	HOW	they’ve	learned	what	they	learned.	This	can	be	done	by	having	students
explain	their	coding	decisions	to	peers	and	laypeople	with	no	coding	experience.	A	great
way	to	do	this	in	a	low-pressure	setting	is	to	have	students	share	their	work	with	parents	and
others	at	an	open	house;	ham	it	up	a	little	for	fun!

Display	student	work	around	the	room,	and	have	students	explain	or	talk	about	their
work	during	an	“art	gallery	opening”	held	at	lunch,	after	school,	or	in	the	evening	during
parent	teacher	conferences	or	open	house	events.

Invite	your	principal,	superintendent,	and	school	staff	to	attend—this	is	a	great	way	to
increase	community	buy-in	for	your	class.

Provide	(or	have	students	bring	in)	cubed	cheese,	fruit,	crackers,	white	grape	juice,	and
crackers.	Create	a	fancy	reception	table	with	a	table	cloth,	plastic	wine	glasses,	and
cocktail	napkins.

Play	jazz,	string	quartet,	or	trip	hop	softly	in	the	background	to	create	a	trendy	reception
vibe,	and	have	students	“dress	like	artists”	and	stand	near	their	work.	Make	sure	you
dress	up/down	to	fit	the	scene!

If	possible,	hand	visitors	“question	cards”	to	give	them	ideas	of	how	they	can	learn	more
about	student	work	as	they	circle	the	“gallery.”	Cards	should	include	prompts	like:

Tell	me	about	your	picture;	how	did	you	come	up	with	this	idea?
Can	you	explain	to	me	a	bit	about	how	you	get	the	computer	to	draw	this	image?

Lesson	3.02:	Limitations	of	Parameters	&	Multiple	Parameters

184

How	did	you	go	about	the	process	of	writing	this	code?
How	did	you	start	this	project?
If	I	wanted	to	change	this	picture,	how	would	I	go	about	doing	it?

An	event	like	this	maintains/raises	student	morale	as	students:

take	ownership	of	their	work,
receive	praise	for	their	hard-earned	accomplishments	thus	far,	and
realize	how	much	they’ve	learned	when	they	explain	code	to	a	non-coder.

Forum	discussion
Lesson	3.02	Limitations	of	Parameters	&	Multiple	Parameters	(TEALS	Discourse	account
required)

Lesson	3.02:	Limitations	of	Parameters	&	Multiple	Parameters

185

http://forums.tealsk12.org/c/unit-3/3-02-limitations-of-parameters-multiple-paramete

Lesson	3.03	—	Return	Values

Overview

Objectives	—	Students	will	be	able	to…

Write	a	program	that	returns	values.

Assessments	—	Students	will…

Complete	Practice-It	questions
Write	a	program	to	meet	a	Pokémon	Challenge

Homework	—	Students	will…

Complete	chapter	3	self-check	question	17	and	exercise	#1

Materials	&	Prep
Projector	and	computer	(if	you	are	able	to/opt	to	use	Eclipse	with	your	students)
Whiteboard	and	markers
Poster	or	image	of

Blastoise	(http://tinyurl.com/ndy3v69)	and
Raichu	(http://tinyurl.com/n2u5vn2)

This	lesson	uses	Pokémon	code;	you	should	read	through	the	example	and	learn	how	stats
work	at	(http://bulbapedia.bulbagarden.net/wiki/Stats).	The	wiki	offers	a	great	amount	of
detail,	and	can	be	used	to	offer	additional	programming	challenges	to	advanced	students.
You	may	want	to	bookmark	this	page	for	future	reference,	since	Pokémon	stats	are	used	in
future	examples.

Pacing	Guide

Lesson	3.03:	Return	Values

186

http://tinyurl.com/ndy3v69
http://tinyurl.com/n2u5vn2
http://bulbapedia.bulbagarden.net/wiki/Stats

Section Total	Time

Bell-work	and	attendance 5min

Review	and	intro	to	returning	values 15min

Practice-It 15min

Pokémon	Challenge 15min

Procedure
This	lesson	introduces	methods	that	return	values,	and	familiarizes	students	with	the	Math
class.	You	should	hook	students	by	introducing	the	Pokemon	challenge	(to	be	completed	at
the	end	of	the	class);	students	will	create	more	code	to	be	used	in	their	larger	Pokemon
program.

Bell-work	and	Attendance	[5	minutes]

Review	and	Introduction	to	Returning	Values	[15	minutes]

1.	 Begin	with	a	lecture/discussion	about	the	Pokémon	challenge	and	returning	values.

When	you’re	playing	a	video	game	like	Pokemon,	part	of	the	fun	is	the	graphic
images	that	help	communicate	the	story	of	your	battles,	training,	or	travels.
However,	all	of	the	outcomes	of	your	game	are	determined	by	math	that	happens	in
the	background.

The	Pokemon	with	better	stats	wins	a	battle;	some	additional	random	numbers	are
thrown	in	to	represent	the	unpredictable	nature	of	the	real	world.

Today	we’re	going	to	learn	how	to	write	methods	that	return	a	value—we	already
know	how	to	get	Java	to	compute	simple	equations	for	us;	now	we’re	going	to	learn
how	to	get	Java	to	give	us	back	those	numbers	so	we	can	use	them	elsewhere	in
our	program.

While	programmers	can	manipulate	the	parameters	passed	into	a	function,
their	code	is	operated	on	a	copy	of	the	value,	and	not	the	value	itself.

If	int	x	is	passed	as	an	argument	into	an	expression	as	the	parameter	int	num,
the	function	may	manipulate	the	value	stored	in	num.	When	the	function
returns,	x	will	be	unchanged.

Lesson	3.03:	Return	Values

187

Students	may	find	the	following	analogy	from	StackOverflow	helpful:	“The
procedure	defines	a	parameter,	and	the	calling	code	passes	an	argument	to
that	parameter.	You	can	think	of	the	parameter	as	a	parking	space,	and	the
argument	as	an	automobile.”

We’re	also	going	to	learn	how	to	use	a	collection	of	equations	that	Java	already	has
written	for	us	called	the	Math	Class.	These	pre-made	methods	make	doing
complex	equations	much	easier!

2.	 Here’s	the	syntax	to	writing	a	method	that	returns	the	sum	of	numbers	1	–	n;	first	the
header:

	public	static		double		sum	(double	n)	{	

We’re	used	to	having	“void”	in	this	spot—but	void	actually	means	that	we’re	writing
a	method	that	we	don’t	expect	to	return	anything.	In	this	highlighted	example,	we
write	our	method	to	return	a	value	of	the	double	type.

	public	static	double		sum		(double	n)	{	

Highlighted	is	our	method	name,	it	goes	in	the	same	place	in	the	header	as	it
always	did.

	public	static	double	sum	(double	n)	{	

We	used	to	just	leave	the	highlighted	section	as	empty	parentheses,	now	we	have
to	tell	Java	what	type	of	type	of	data	we’re	going	to	put	into	the	method	(the	formal
parameter).

3.	 Ask	students	to	change	the	method	header	so	it	sums	data	from	input	int	data	and
returns	data	of	the	type	int	as	well.

4.	 Ask	students	to	change	the	method	header	so	this	new	method	is	called	doubleSum.

5.	 If	students	are	adjusting	these	parts	of	the	method	header	with	ease,	move	onto	the
method	body:

public	static	int	sum	(int	n)	{

				return	(n	+	1)	*	n	/	2;

Without	the	special	return	statement,	this	wouldn’t	return	a	value	to	the	main
method!	It	would	basically	be	a	void	method,	like	the	ones	we	wrote	before.	It	is	an
error	in	Java	for	flow	of	control	to	reach	the	end	of	a	non-void	method	without	a
return!

This	method	only	makes	sense	if	we	have	a	main	method	that	can	pick	up	the
value	that	we’re	asking	Java	to	return,	so	have	students	write	a	main	method:

Lesson	3.03:	Return	Values

188

public	static	void	main	(string[]	args)	{				//	a.	Why	is	the	main	method	voi

d?

				int	answer	=	sum	(100);																		//	b.	What	is	this	line	doing?

				System.out.println	("The	sum	of	1	to	100	is"	+	"	"	+	answer);

i.	 The	method	main	is	void	because	it	returns	no	value.
ii.	 This	line	is	declaring	&	assigning	a	value	to	the	variable		answer	.

6.	 Ask	students	to	tell	you	where	to	place	the	brackets,	and	briefly	review	scope.

If	they	want	to	do	fancier	math,	they	can	use	the	formulas	that	Java	has	already	stored	in	the
Math	class.	As	students	read	last	night,	there	is	a	list	of	the	most-used	formulas	in	table	3.2
of	the	book.

There	is	special	notation	needed	for	the	methods	in	the	Math	class,	because	you	have
to	tell	Java	to	go	and	use	the	method	in	another	class.	We	call	this	“dot	notation.”

If	you	wanted	to	generate	a	random	number	to	use	in	a	formula	for	your	Pokemon	game
(to	add	a	little	chance	to	a	battle,	lets	say),	you	would	create	a	method:

public	static	double	pokemonRandom()	{

				return	Math.random()	*	100;

}

The	math	class’	method	random	gives	a	random	number	between	0.0	and	1.0;	we
multiply	it	by	100	because	Pokemon	random	numbers	are	values	between	0	and	100.
This	method	now	gives	us	a	random	number	between	0	and	100.	We	can	use	our	new
pokemonRandom	method	whenever	we	need	a	random	number	from	that	range.

If	students	are	getting	the	material,	have	them	work	independently	on	the	Practice-It
problems,	otherwise,	work	through	the	problems	together	as	a	whole	class.

Practice-It	[15	minutes]

Have	students	work	individually	or	in	pairs	to	complete	the	following	Practice-It	self	check
questions:

1.	 parameterMysteryReturn
2.	 mathExpressions2
3.	 min

Pokémon	Challenge	[15	minutes]

Lesson	3.03:	Return	Values

189

Once	students	have	completed	these	exercises,	invite	them	to	complete	the	following
Pokémon	challenge:

POKEMON	CHALLENGE:

A	Pokémon’s	base	stat	values	will	most	often	have	the	greatest	influence	over	their	specific
stats	at	any	level.	If	we	leave	out	individual	values,	effort	values,	and	nature,	a	level	100
Pokémon’s	stats	in	Attack,	Defense,	Speed,	Special	Attack,	and	Special	Defense	will	be
exactly	5	more	than	double	its	base	stat	values	in	each,	while	the	Hit	Points	(HP)	stat	will	be
110	plus	double	the	base	stat	value	(except	in	the	case	of	Shedinja,	whose	HP	is	always	1).

Write	a	program	that	returns	a	Pokémon’s	stats	for	Attack	and	HP	at	level	100.	You	should
use	parameters	and	methods	that	return	values	for	this	program.	You	may	choose	to	use	the
base	stats	for	Blastoise	OR	Raichu	given	here:

Blastoise Raichu

HP:	79 HP:	60

Attack:	83 Attack:	90

Defense:	100 Defense:	55

Special	Attack:	85 Special	Attack:	90

Special	Defense:	105 Special	Defense:	80

Speed:	78 Speed:	110

Accommodation	and	Differentiation
For	students	who	complete	the	Pokemon	challenge	early,	ask	them	to	flesh	out	their
program	by:

Adding	methods	that	return	stats	for	Speed,	Special	Attack,	Special	Defense,	and
Defense.

Writing	a	method	that	will	compare	stats	between	Blastiose	and	Raichu,	then	return	the
maximum	value.	(This	program	doesn’t	need	to	accept	user	input	–yet!)

If	students	are	struggling	with	the	Pokemon	Challenge,	urge	them	to	begin	with	their
structure	diagram	of	pseudocode.	Once	they	have	this	code,	help	them	write	the	method	to
calculate	stats	by	assisting	with	the	algebra,	if	needed.

Lesson	3.03:	Return	Values

190

Misconceptions
Output	to	the	console	is	somehow	synonymous	with	the	return	value	of	a	method:
overloading	the	use	of	the	word	output.

Video
BJP	3-2,	Parameters	and	Return	Values
http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c3-2

CSE	142,	Methods	that	Return	Values	(1:25-8:45)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=dc713b99-c294-403f-
82ee-52fc3323a19b&start=85

CSE	142:	Return	value	worked	example	(8:46-38:32)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=dc713b99-c294-403f-
82ee-52fc3323a19b&start=85

Forum	discussion
Lesson	3.03	Return	Values	(TEALS	Discourse	account	required)

Lesson	3.03:	Return	Values

191

http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c3-2
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=dc713b99-c294-403f-82ee-52fc3323a19b&start=85
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=dc713b99-c294-403f-82ee-52fc3323a19b&start=85
http://forums.tealsk12.org/c/unit-3/3-03-return-values

Lesson	3.04	—	Programming	Project

Overview

Objectives	—	Students	will	be	able	to…

Write	a	program	that	uses	parameters,	the	math	class,	and	returns	values.

Assessments	—	Students	will…

Submit	an	Equestria	program	by	the	end	of	class.

Homework	—	Students	will…

Read	BJP	3.3	up	to	“Interactive	Programs	and	Scanner	Objects”
Complete	Ch.3	self-check	questions	18	&	19

Materials	&	Prep
Projector	and	computer	(if	you	are	able	to/opt	to	use	Eclipse	with	your	students)
White	paper	and	markers
Classroom	copies	of	WS	3.4,	Equestria
Classroom	copies	of	Algorithm	for	Solving	Problems
Poster	or	image	of	Equestria	map	with	Cartesian	coordinates	(Poster	3.4)

The	handout	“Algorithm	for	Solving	Problems”	should	be	used/drilled	every	time	the	students
are	asked	to	solve	a	larger,	AP	Test	Section	II	–	type	problem.	You	may	find	it	useful	to	make
a	large-format	poster	to	hang	in	your	room	so	students	always	see	the	steps	they	should	use
to	tackle	a	large	programming	problem.

Pacing	Guide

Section Total	Time

Bell-work	and	attendance 5min

Introduction	to	programming	project 5min

Student	programming	time 45min

Lesson	3.04:	Programming	Project

192

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit3/WS%203.4.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit3/Map%20of%20Equestria.pptx

Procedure
Over	the	next	few	weeks,	we’ll	be	introducing	students	to	larger	programming	projects	to
meet	the	AP	Computer	Science	A	lab	requirements.	It	is	in	your	and	your	students’	best
interest	if	you	encourage	them	to	help	themselves	and	each	other	before	seeing	you.
Depending	on	the	length	of	your	class	periods,	this	lab	may	take	2	class	periods	to
complete.

Bell-work	and	Attendance	[5	minutes]

Introduction	to	Programming	Project	[10	minutes]

Begin	with	an	introduction	to	today’s	programming	project.

Students	should	complete	this	programming	project	individually.	As	a	whole	group,
review	the	Algorithm	for	Solving	Problems	sheet.	Read	the	sheet	out	loud,	and	briefly
model	the	steps	as	you	review	the	programming	assignment.	Read	the	programming
assignment	to	the	class,	taking	time	to	pause	between	each	of	the	three	requirements
outlined	in	the	question.

Ask	students	what	their	very	first	steps	should	be	according	to	the	problem-solving
algorithm.

Require	that	pseudocode/comment	documentation	be	submitted.	Include	these	as	part
of	the	lab	grade.

Remind	students	to	tackle	one	part	of	the	problem	at	a	time.	It	is	OK	if	they	leave
pseudocode	in	while	they	solve	a	different	part	of	the	problem,	and	they	don’t	have	to
solve	all	of	parts	of	the	program	in	any	particular	order.

They	should	refer	to	their	notes,	textbooks,	and	posters/work	around	the	room	to	help
them	come	up	with	ideas/solutions	to	programming	problems.

Sometimes	it’s	a	good	idea	to	step	away	from	a	problem	for	a	few	minutes	if	they’re
stuck—work	on	a	different	method	and	return	to	where	they	were	stuck	later.

Student	Programming	Time	[45	minutes]
In	an	email,	on	the	projector,	or	as	a	handout	(WS	3.4),	give	students	the	following	questions
to	work	on	individually,	or	in	pairs.

Lesson	3.04:	Programming	Project

193

PROGRAMMING	PROJECT

Exercise	1

Princess	Luna	and	Celestia	are	going	on	a	tour	of	the	kingdom	to	greet	the	other	citizens	of
Equestria.	Their	tour	takes	them	on	a	circular	path	(shown	on	map).	Write	a	method	called
roadTrip	that	(1)	accepts	as	a	parameter	the	diameter	of	the	circular	path,	and	(2)	returns
the	length	of	the	trip.

The	equation	for	circumference	is:	C	=	dπ

Java	has	a	math	constant	called		Math.PI	.

Exercise	2

Write	a	method	called	distance	that	(1)	accepts	four	integer	coordinates:	x1,	y1,	x2,	y2	as
parameters,	(2)	computes	the	distance	between	points	(x1,	y1)	and	(x2,	y2)	on	the	map,	and
(3)	returns	that	distance.

The	equation	for	the	distance	is:	sqrt	((x2	-	x1) 	+	(y2	-	y1)).

Test	out	your	program	by	writing	a	main	method	that	calls	the	distance	method	for	each	of
the	following	pairs	of	cities.	Your	main	method	should	output	the	value	returned	by	the
distance	method.

1.	 Distance	from	Baltimare	to	Manehattan	=

2.	 Distance	from	Los	Pegasus	to	Neighagra	Falls	=

3.	 Distance	from	the	Badlands	to	Ponyville	=

Exercise	3

Write	a	program	that	helps	Princess	Luna	plan	a	3-stop	tour	of	Equestria.	Choose	any	3
locations	in	Equestria,	as	defined	by	their	x	and	y	coordinates	on	the	map.	You	program
should	output	the	distance	between	the	three	destinations.

You	should	use	the	distance	methods	you	wrote	for	Exercise	2.

Exercise	4

Write	a	method	called		totalTrip		that	accepts	parameters	for	3	locations	(each	containing
coordinates)	and	returns	the	total	distance	traveled	by	visiting	all	3	locations	and	returning	to
the	starting	location.	You	should	use	the	distance	methods	you	wrote	in	Exercise	2	and	you
can	choose	any	3	locations	in	Equestria.

Extra	credit:	make	this	program	compute	4	locations	instead!

2 2

Lesson	3.04:	Programming	Project

194

Accommodation	and	Differentiation
For	students	who	complete	the	lab	early,	ask	them	to	flesh	out	their	program	by	adding	a
method	that	will	calculate	the	sum	of	the	distances	travelled	between	three	cities	in	Exercise
2.

If	you	suspect	that	students	will	struggle	with	procedural	decomposition,	have	them	work	in
groups	to	figure	out	a	course	of	action	before	beginning.	Procedural	decomposition	is	one	of
the	hardest	skills	for	students	to	acquire,	so	it	is	critical	that	you	allow	students	to	fight
through	the	process.

If	additional	scaffolding	is	needed,	you	might	list	all	of	the	parts	of	the	program,	or	have
students	come	up	with	the	parts	(“figure	out	how	to	write	the	equation	in	Java	using	the	math
class,”	“create	some	parameters	to	pass	to	a	return	method,”	“write	the	framework	for	a
method	to	return	the	distance	value”)	out	of	order,	then	give	the	students	some	time	to
organize	the	steps	themselves.	As	a	whole	group,	you	can	then	come	to	consensus	on	what
steps	need	to	be	approached,	and	what	order	components	should	appear	in	the	final
program.

Forum	discussion
Lesson	3.04	Programming	Project	(TEALS	Discourse	account	required)

Lesson	3.04:	Programming	Project

195

http://forums.tealsk12.org/c/unit-3/3-04-programming-project

Lesson	3.05	—	Using	Objects	&	String
Processing

Overview

Objectives	—	Students	will	be	able	to…

Differentiate	between	primitive	and	object	types.
Apply	0-indexing	and	string	processing	techniques	to	predict	the	output	of	a	program.

Assessments	—	Students	will…

Complete	WS	3.5

Homework	—	Students	will…

Read	BJP	3.3	“Interactive	Programming”	and	“Sample	Interactive	Program”
Complete	self-check	questions	19-21

Materials	&	Prep
Projector	and	computer	(if	you	are	able	to/opt	to	use	Eclipse	with	your	students)
Whiteboard	and	markers
Classroom	copies	of	WS	3.5

The	handouts	for	this	lesson	include	notes	as	well	as	exercises.	If	you	are	working	on
developing	note-taking	skills	in	your	classroom,	you	may	prefer	to	delete	the	notes	from	the
worksheet	(so	it	is	only	a	sheet	of	exercises	and/or	images).

If	you	teach	in	an	ELL	or	SpEd	classroom,	leaving	the	worksheet	as-is	will	allow	students	to
focus	on	content	instead	of	translating	notes	into	their	notebooks.

Pacing	Guide

Lesson	3.05:	Using	Objects	&	String	Processing

196

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit3/WS%203.5.docx

Section Total	Time

Bell-work	and	attendance 5min

Intro/Review	of	objects	&	string	processing 5–15min

Round	Robin 35–45min

Paper	selection	&	grade	announcement 3min

Procedure
There	are	several	ways	you	can	teach	today’s	class.	You	should	first	check	in	with	your
students	to	see	how	prepared	they	are	for	today’s	lesson.	If	students	understood	most	of
what	they	read	for	homework	last	night,	you	can	ask	students	for	specific	questions,	cover
only	those	topics,	then	move	on	to	the	Round-Robin	activity.	If	your	class	is	mostly	confused,
you	can	re-teach	all	of	the	content,	following	along	the	worksheet,	and	breaking	the
exercises	into	4	parts	(as	listed	on	the	original	worksheet).

Bell-work	and	Attendance	[5	minutes]

Introduction/Review	of	Objects	and	String	Processing	[10
minutes]

1.	 Begin	with	an	introduction	to	the	concepts	of	objects	and	string	processing.

Using	WS	3.5,	walk	students	through	the	difference	between	primitives	and	objects.

Ask	students	to	expand	on	the	atom/molecule	metaphor;	what	“atoms”	make	up	the
String	“molecule?”	(Chars	are	atoms.)

Make	sure	to	emphasize	that	an	object	types	contains	data	and	behavior
(methods),	while	primitives	just	contain	data.

It	might	help	students	organize	their	thoughts	if	you	graphically	organize	types	with	the
following	hierarchy:

Lesson	3.05:	Using	Objects	&	String	Processing

197

																						Types

																						.'	'.

																				.'					'.

																		.'									'.

																.'													'.

											Primitives										Objects

										.'		|			'.															'.

								.'				|					'.															'.

						.'						|							'.															'.

				int					double			boolean											String

2.	 When	explaining	the	concept	of	class,	the	car	analogy	might	not	resonate	with	your
students	(especially	if	they	do	not	use	cars,	or	live	in	an	area	where	cars	are	not
common).	Since	we’re	not	delving	into	the	concept	of	class	too	deeply	at	this	point,
don’t	spend	too	much	time	on	this	concept.	Additional	analogies	that	have	worked:

Class:	Home,	Object	(instances	of	class	home)	each	student’s	home.

Class:	Desk,	Object	each	student’s	desk	(can	introduce	states	of	desk:	messy,
neat,	crooked,	without-a-chair,	etc.)

3.	 When	reviewing	object	methods,	remind	students	that	they	need	to	do	something	with
the	return	value,	such	as	System.out.print.

Review	dot	notation	as	diagramed
Model	counting	the	index	positions	when	you	demonstrate	the	charAt	method.
Have	students	predict	the	output	of	charAt	with	different	indexes.

4.	 Break	for	the	first	bout	of	Round	Robin	(or,	if	only	conducting	a	quick	review,	finish
reviewing	all	topics	and	allow	students	to	do	all	Round	Robin	exercises	at	the	end	of	the
introduction.)

In	reviewing	substring,	indexOf,	toUpperCase,	toLowerCase,	and	equals	methods,	work
through	some	additional	examples	on	the	board	if	needed.	If	providing	the	students	the
complete	worksheet	(with	notes),	encourage	them	to	highlight,	circle,	or	transcribe	the
definitions	or	syntax	examples	into	their	notebook.

A	fun	“tricky”	way	to	assess	student	understanding	is	to	ask	why	Java	returns		-1		when	the
search	text	isn’t	found.	(Answer:		-1		is	never	a	valid	index	into	a	String.)

Round	Robin	[35-45	minutes]

1.	 Round-robin	is	a	drilling	and	error-checking	exercise	used	with	worksheets.	At
minimum,	there	should	be	1	question	for	each	student	(e.g.	a	class	of	15	students	would
need	a	worksheet	with	15	or	more	questions).	Students	write	their	name	on	the
worksheet,	complete	the	first	problem,	then	pass	the	paper	to	the	student	on	the	right

Lesson	3.05:	Using	Objects	&	String	Processing

198

(or	whatever	direction	you	choose).	The	next	student	first	checks	the	previous	answer,
correcting	it	if	need	be,	then	completes	the	second	question.	Each	student	then	passes
on	the	paper	again.	By	the	end	of	the	exercise,	each	student	has	checked	and
completed	each	question	on	the	worksheet.

2.	 The	hook	is	that	you	choose	only	ONE	worksheet	from	the	pile	to	grade.	All	students
get	a	grade	from	that	one	worksheet.	This	keeps	students	invested	throughout	the
exercise.	Advanced	students	will	check	questions	throughout	the	whole	worksheet,	and
all	students	will	try	their	best	to	catch	their	own	(and	others’)	mistakes,	since	the	whole
class	shares	the	randomly-selected-paper’s	grade.

3.	 You	should	time	each	question/checking	interval,	and	call	“SWITCH!”	when	it	is	time	for
students	to	pass	along	papers.

a.	Exercise	1	questions	(the	first	4	questions)	should	take	~2	minutes	each.

b.	Exercise	2	questions	(the	second	4	questions)	should	take	~2	minutes	each.

c.	Exercise	3	questions	(a	set	of	5	questions)	should	take	~2	-3	minutes	each.

d.	Exercise	4	questions	(the	last	set	of	4	questions)	should	take	~1	minute	each.

Adjust	the	timing	on	these	questions	as	needed,	but	try	to	keep	a	brisk	pace.	Part	of	the
engagement	factor	is	the	sense	of	urgency.

Paper	selection	and	grade	announcement	[3	minutes]

If	time	allows,	randomly	select	the	worksheet	and	announce	the	class	grade	with	a	bit	of
fanfare,	congratulating	the	class	on	a	job	well	done.

Accommodation	and	Differentiation
To	optimize	this	exercise,	you	might	consider	rearranging	students	(or	creating	a	passing-
path)	that	mixes	students	of	different	coding	abilities.	The	advanced	students	can	use	the
extra	time	to	correct	mistakes	made	by	others;	if	they	are	sitting	in	proximity	to	the	student
that	made	the	error,	they	will	have	a	better	chance	of	explaining	the	correct	answer	to	them.

Due	to	the	brisk	pace	of	the	round-robin	rotation,	there	shouldn’t	be	too	much	down	time	for
any	one	student.	If	you	do	find	a	student	that	is	looking	bored,	make	eye	contact	with	them
as	you	remind	the	entire	class	that	everyone	should	be	checking	the	problems	handed	to
them	once	they	are	done	with	solving	their	assigned	problem.

Lesson	3.05:	Using	Objects	&	String	Processing

199

ELL	classrooms	may	need	to	allow	2	class	periods	to	complete	the	round-robin	exercise.
There	are	many	topics	covered	during	the	lesson,	and	it	may	be	best	to	introduce
vocabulary	at	a	slower	rate.

Misconceptions
Up	to	this	point,	students	have	been	using	quoted	strings	as	a	primitive	type,	but
	String		is	a	class	in	Java.	Worksheet	3.5	introduces	the	String		.equals()		method.
Students	will	need	to	start	thinking	of	strings	as	an	object	and	when	comparing	two
strings,	use	the		.equals()		method.	Java	is	inconsistent	in	its	treatment	of	strings.

Videos
BJP	3-3,	Working	with	Strings	Values
http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c3-3

CSE	142,	Strings	(18:40–33:05)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=6ca465e0-abac-4b46-
b488-d4ba5c6c5aa6&start=1322

UW	AP	CS	Prep,	Java	String	Processing
https://www.youtube.com/playlist?list=PL_bszZLe8OFfnueQ6fn7wNqu87k3X2Nin

Forum	discussion
Lesson	3.05	Using	Objects	&	String	Processing	(TEALS	Discourse	account	required)

Lesson	3.05:	Using	Objects	&	String	Processing

200

http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c3-3
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=6ca465e0-abac-4b46-b488-d4ba5c6c5aa6&start=1322
https://www.youtube.com/playlist?list=PL_bszZLe8OFfnueQ6fn7wNqu87k3X2Nin
http://forums.tealsk12.org/c/unit-3/3-05-using-objects-string-processing

Lesson	3.06	—	Interactive	Programs	&
Scanner	Objects

Overview

Objectives	—	Students	will	be	able	to…

Write	programs	that	accept	user	input	using	a	scanner	object.

Assessments	—	Students	will…

Complete	Practice-It	problems

Homework	—	Students	will…

Outline	Chapter	3,	except	for	BJP	3.4

Materials	&	Prep
Projector	and	computer
Whiteboard	and	markers

Pacing	Guide

Section Total	Time

Bell-work	and	attendance 5min

Introduction	to	interactive	programming 15min

Student	practice 35min

Procedure

Bell-work	and	Attendance	[5	minutes]

Lesson	3.06:	Interactive	Programs	&	Scanner	Objects

201

Introduction	to	Interactive	Programming	[10	minutes]

1.	 Hook	the	students	with	a	brief	discussion	about	Pokemon.	Be	sure	that	the	following
points	come	up	during	discussion	(either	you	bring	them	up,	or	you	guide	the	students
to	bring	these	points	up	themselves):

EV	(experience	values)	are	gained	through	combat.	When	one	Pokemon	wins
against	another,	they	win	EV	points	to	raise	your	stats.

These	stats	are	private,	the	trainer	(user)	cannot	see	them.

If	you	want	to	know	what	your	EV	value	is	(so	you	can	determine	strategy	and	gain
the	most	points),	you	need	to	compute	it	yourself	given	the	values	that	you	can	see.

The	formula	for	calculating	HP	is	on	Bulbepedia,	and	if	we	do	some	algebra	we	can
calculate	EV.	Let’s	write	a	program	that	will	help	us	calculate	EV	for	any	Pokemon
stats	a	trainer	enters.

2.	 Have	a	student	(or	sequential	students)	come	to	the	board	to	write	the	console	output
as	you	work	through	the	example	below.	You	should	have	students	write	and	label	this
sample	program	as	you	write	it.	While	discussing	the	different	parts	of	the	program,
circle	the	room,	checking	to	make	sure	students	are	keeping	up	with	the	notes.

Write	a	method	that	reads	user	input	for	known	Pokemon	stats	to	determine	EV
(effort	value).

import	java.util.*;

Anytime	you’re	getting	user	input,	start	with	this	import	declaration:

public	class	GetEV	{

				public	static	void	main(String[]	args)	{

								Scanner	userInput	=	new	Scanner	(System.in);

So	far,	the	headers	look	familiar.	When	constructing	the	scanner:

You	always	capitalize	Scanner
Name	the	scanner	something	useful	(scanner,	console,	userInput)
Construct	with	the		new		keyword,	and		System.in	.

								System.out.println	("This	program	calculates	user	EV.");

								System.out.println	("Input	your	Pokemon's	stats	below:");

This	outputs	to	the	console	a	message	explaining	the	program	to	the	user:

Lesson	3.06:	Interactive	Programs	&	Scanner	Objects

202

								System.out.print	("Hit	points:	");

								int	hp	=	userInput.nextInt();

This	pairs	a	user	prompt	with	a	variable	hp	that	holds	the	information	the	user
inputted.

								System.out.print("Level:	");

								int	level	=	userInput.nextInt();

Again,	we	pair	the	prompt	for	the	user	input	with	the	scanner	that	accepts	and
stores	that	data	as	a	variable	for	later	use.

								System.out.print("IV:	");							//	This	is	for	initial	value	of	the	h

it	point	stat.

								int	iv	=	userInput.nextInt();

								System.out.print("Base	HP:	");

								int	base	=	userInput.nextInt();

Next	we	need	to	write	the	formula	that	will	calculate	EV	from	the	user	input,	then
return	a	value	(otherwise	the	scanner	has	no	function!)	You	should	have	the
students	build	as	much	of	this	formula	as	possible:

EV	=	(((HP	–	10)	100)	/	Level	–	2Base	–	IV	–	100)	*	4

								int	ev	=	(((hp–10)	*	100)/level	–	2	*	base	–	iv	–	100)	*	4;

								System.out.println("You	have	"	+	ev	+	"	effort	value	points	for	your	

HP	stat.");

				}

}

If	students	need	another	example,	work	through	the	book	example	for	mortgage
payments,	having	students	write	more	of	the	code	than	in	the	previous	example.

Student	Practice	[35	minutes]

1.	 Have	students	complete	the	following	Practice-It	self-check	questions:

i.	 promptMultiplyBy2
ii.	 SumNumbers
iii.	 RobertPaulson

2.	 Have	students	complete	the	following	Practice-It	example	questions:

i.	 scientific

Lesson	3.06:	Interactive	Programs	&	Scanner	Objects

203

ii.	 cylinderSurfaceArea
iii.	 sphereVolume

Accommodation	and	Differentiation
In	ELL	classrooms,	you	should	distribute	a	handout	diagramming	the	parts	of	a	program	with
all	vocabulary	words	included	on	the	sample	code	or	screenshot.	Turning	the	pictures	on	the
worksheet	into	classroom	posters	will	be	helpful	in	helping	students	remember	syntax.

Video
BJP	3–4,	Programming	with	Parameters
http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c3-4

CSE	142,	Scanner	(0:21-23:06)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=0c247411-e890-4835-
8a79-bee6e74066c2&start=21

Forum	discussion
Lesson	3.06	Interactive	Programs	&	Scanner	Objects	(TEALS	Discourse	account	required)

Lesson	3.06:	Interactive	Programs	&	Scanner	Objects

204

http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c3-4
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=0c247411-e890-4835-8a79-bee6e74066c2&start=21
http://forums.tealsk12.org/c/unit-3/3-06-interactive-programs-scanner-objects

Lesson	3.07	—	Pokémon	Battle
Programming	Project

Overview

Objectives	—	Students	will	be	able	to…

Write	a	program	that	requests	user	input	and	returns	data.

Assessments	—	Students	will…

Write	a	program	that	calculates	damage	done	to	Pokémon	in	a	battle.

Homework	—	Students	will…

Summarize	their	class	notes	since	the	last	exam
If	they	are	missing	notes,	get	them	from	another	student	or	supplement	them	from
the	textbook

Materials	&	Prep
Projector	and	computer	(if	you	are	able	to/opt	to	use	Eclipse	with	your	students)
Whiteboard	and	markers
Classroom	copies	of	WS	3.7	LP	Battle
Video	of	sample	battle	(http://youtu.be/k7K5LEE9xxw?t=48s)
Advanced	damage	calculator	(https://pokemonshowdown.com/damagecalc/)

The	8-minute	video	demonstrates	a	typical	battle	sequence	from	one	of	the	more	recent
Pokémon	versions.	If	your	class	does	not	play	the	video	game,	you	could	show	battle
footage	of	the	anime	series,	the	card	game,	or	the	coin	game.	As	the	instructor,	you	should
familiarize	yourself	with	the	sequence	of	a	Pokémon	battle,	so	you	can	help	students	with
procedural	decomposition	and	grade	different	student	solutions.

Pacing	Guide

Lesson	3.07:	Pokémon	Battle	Programming	Project

205

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit3/WS%203.7.docx
http://youtu.be/k7K5LEE9xxw?t=48s
https://pokemonshowdown.com/damagecalc/

Section Total	Time

Bell-work	and	attendance 5min

Introduction	to	lab	&	viewing	of	battle 10min

Student	programming	practice 40min

Procedure
The	programming	project	today	has	students	programming	a	“starter”	Pokémon	battle
sequence.	This	is	a	somewhat	open-ended	assignment,	since	students	can	submit	a	basic
program	that	runs	1	or	2	interactions,	or	a	complete	battle	sequence,	depending	on	their
level	of	understanding.

Student	programs	for	this	assignment	will	be	a	lobotomized	version	of	a	Pokémon	battle
since	students	have	not	yet	learned	conditional	statements.	This	is	a	deliberate	move:
students	can	focus	on	building	segments	of	code	that	accept	basic	user	input,	use	the	math
class	to	generate	random	numbers	to	determine	battle	outcomes	(or	roll-of-the-dice	or	spin
for	the	card-game	and	coin	game	versions),	and	return	game	text.	Capitalize	on	student
frustration	by	(or	motivate	students	with	the	prospect	of)	hinting	at	a	more	interactive
program	after	the	next	few	lessons	on	Ch.	4	and	Ch.	5.

Bell-work	and	Attendance	[5	minutes]

Introduction	to	Lab	and	Viewing	of	Battle	[10	minutes]

At	the	beginning	of	class,	introduce	the	lab	and	watch	the	sample	battle	video.

Student	Programming	Practice	[40	minutes]

1.	 Have	students	complete	this	programming	project	individually.	Before	you	break	out	the
class	for	lab	time,	read	the	question	out	loud	to	the	class,	taking	time	to	pause	between
each	of	the	requirements	outlined	in	the	lab	assignment.

2.	 Ask	students	what	their	very	first	steps	should	be.

They	should	outline	their	approach	in	pseudocode	or	with	a	structure	diagram.
Remind	them	that	this	documentation	should	be	submitted	in	order	to	get	full	credit
for	their	lab,	and	refer	them	to	the	Algorithm	for	Solving	Problems	sheet.

Lesson	3.07:	Pokémon	Battle	Programming	Project

206

Remind	students	to	tackle	one	part	of	the	problem	at	a	time.	Remind	students	that
it	is	OK	if	they	leave	pseudocode	in	while	they	solve	a	different	part	of	the	problem,
and	partial	credit	should	be	given	to	correct	pseudocode.

3.	 To	encourage	grit,	have	students	review	the	steps	they	should	take	before	raising	their
hand	for	a	question:

Refer	to	notes,	textbooks,	and	posters/displayed	work	around	the	room.
Work	on	a	different	part	of	the	problem	if	they	get	stuck,	then	return	to	it	later.
Ask	another	student	for	a	hint,	tip,	or	for	error-spotting.

4.	 In	an	email,	on	the	projector,	or	as	a	handout	WS	3.7,	give	student	the	following
questions	to	work	on	individually	(or,	if	scaffolding	requires	it,	in	pairs).

PROGRAMMING	PROJECT

Complete	this	programming	project	using	your	notes,	the	text	book,	and	any	online	or	in-
class	sources	you	like.	Your	work	must	be	your	own;	you	may	ask	a	friend	to	look	over	your
work,	or	discuss	procedural	decomposition	with	you,	but	you	must	write	all	code	on	your
own.	To	receive	full	credit	on	this	lab,	you	must	submit	a	structure	diagram	or	pseudocode-
plan	for	each	question.

Recall	how	to	use	Scanner	to	get	user	input:

Scanner	console	=	new	Scanner(System.in);

System.out.print("Hello,	what	is	your	name?	");

String	name	=	console.nextLine();

System.out.print("What	is	your	age?	");

int	age	=	console.nextInt();

Exercise	1

Write	a	method	called	battleStart()	that	introduces	the	battle,	prompts	the	user	to	choose
their	first	Pokémon	to	battle,	and	outputs	the	pairing.	battleStart()	should	also	return	the
name	of	the	Pokemon	chosen.	Your	output	should	look	something	like	this:

Lesson	3.07:	Pokémon	Battle	Programming	Project

207

Another	trainer	is	issuing	a	challenge!

Zebstrika	appeared.

Which	Pokémon	do	you	choose?	Arcanine

You	chose	Arcanine!

It’s	a	Pokémon	battle	between	Arcanine	and	Zebstrika!	Go!

Call	battleStart()	from	your	main()	method	and	store	the	name	of	the	Pokemon	in	a	variable.

Exercise	2

Write	a	method	called	damage()	that	takes	a	Pokemon’s	name	as	a	parameter	and	returns
the	about	of	HP	after	damage	has	been	done.	damage()	should	prompt	the	user	for	their
base	stats	in	order	to	calculate	damage.	Use	the	following	equations	for	calculating	damage:

Modifier	=	Same	Type	Attack	Bonus	(STAB)	*	Random

Damage	=	Modifier	*	((2*Level+10)/250	+	(Attack/Defense)*Base	+	2)

Hint:	The	Pokémon	game	always	selects	a	random	number	between	0.85	and	1.0.

Your	output	should	look	like	this:

Zebstrika	used	Thunderbolt!

Trainer,	what	are	your	Arcanine’s	stats?

Level:

Attack:

Defense:

Base:

STAB:

HP:

Arcanine	sustained	10	points	damage.	

HP,	after	damage,	are	now	70.

Call	damage()	from	your	main()	method	with	the	Pokemon’s	name	from	Exercise	1	and	store
the	return	value	(HP)	in	a	variable.

Exercise	3

Write	a	method	called	statsTable()	that	accepts	the	user’s	Pokemon	name,	stats	and	learned
moves	as	parameters,	and	outputs	something	similar	to	this	image:

Lesson	3.07:	Pokémon	Battle	Programming	Project

208

You	are	not	required	to	align	the	columns	of	the	tables	in	any	fancy	way,	but	if	you	do,	use
escape	sequences	to	align	data.	For	your	drawing,	you	may	use	code	you’ve	grabbed	from
the	internet,	or	recycle	an	image	you	created	earlier	in	the	year.

Sample	output:

Name						Alakazam

Level					40

HP								96

ATTACK				52

DEFENSE			51

SP.	ATK			121

SP.	DEF			81

SPEED					107

Moves	Learned:	Thunder	Wave,	Hidden	Power,	Psycho	Cut,	Recover

Call	statsTable()	from	your	main()	method	with	the	Pokemon’s	name	from	Exercise	1	and	the
HP	from	Exercise	2	and	any	other	values	you’d	like	for	the	other	parameters.

Conclusion

In	your	completed	project	should	include	the	following	methods:

battleStart()
damage()
statsTable()

These	methods	should	all	be	called	in	main()	so	that	the	player	can	experience	the	entire
battle	in	one	sitting.

Proper	Java	syntax	and	thorough	comments	are	required.

Lesson	3.07:	Pokémon	Battle	Programming	Project

209

Accommodation	and	Differentiation
If	you	have	students	finish	the	lab	quickly,	invite	them	to	check	out	the	advanced	damage
calculator	online.	They	can	add	input	fields	to	their	own	damage	calculator,	thus	improving
their	Pokémon	simulation.

Alternatively,	if	students	seem	interested	in	increasing	the	interactivity	of	their	battle
sequence,	you	can	allow	them	to	read	ahead	in	the	book.	Students	may	read	up	on
Bulbapedia	(the	wiki	for	Pokémon)	that	Thunderbolt	has	a	10%	chance	of	paralyzing	its’
target.	Invite	students	to	think	how	to	add	that	factor	into	their	battle	simulation	as	they	read
through	Ch.	4	and	Ch.	5	materials.

If	students	are	struggling	with	creating	the	graphic	in	Exercise	3,	help	students	by	writing
helper	lines	of	code	on	the	board,	or	creating	a	pseudocode	outline	as	a	whole	group.

Forum	discussion
Lesson	3.07	Pokémon	Battle	Programming	Project	(TEALS	Discourse	account	required)

Lesson	3.07:	Pokémon	Battle	Programming	Project

210

http://forums.tealsk12.org/c/unit-3/3-07-pokemon-battle-programming-project

Lesson	3.08	—	Finding	&	Fixing	Errors

Overview

Objectives	—	Students	will	be	able	to…

Find	errors	in	their	returned	homework	assignments.
Correct	their	previously	submitted	homework	and	classwork

Assessments	—	Students	will…

Re-submit	all	homework	assignments	with	corrected	answers.

Homework	—	Students	will…

Read	BJP	4.1	up	to	“Nested	if	else	Statements”
Complete	Chapter	4	self-check	problems	1–6

Materials	&	Prep
Any	student	homework	assignments	that	you	have	not	yet	returned
Student	self-help	system	(such	as	C2B4	or	student	pairing)
Bookmarks	on	students’	computers	to	webmaker.org

If	you	are	not	yet	familiar	with	X-ray	Goggles,	Thimble,	or	Popcorn	Maker,	you	should	take
some	time	to	explore	webmaker.org	before	class.	The	site	is	rich	with	enrichment	tools	and
hooks	for	your	classroom!

Pacing	Guide

Section Total	Time

Bell-work	and	attendance 5min

Introduction	and	homework	distribution 5min

Student	work 35min

Students	trade	work,	check,	and	submit 10min

Lesson	3.08:	Finding	&	Fixing	Errors

211

http://www.webmaker.org

Procedure
Today	we	continue	reinforcing	concepts	and	applying	the	tools,	procedures,	and	code	that
were	introduced	last	week.	Students	will	have	the	opportunity	to	correct	any	incorrect
homework	assignments.	If	students	did	not	have	time	to	finish	the	programming	projects
from	yesterday,	you	may	allow	them	time	to	work	on	those	projects	today.

Reward	students	that	did	their	work	correctly	with	quiet	free	time.	Alternatively,	give	them	a
fun	programming	assignment	to	do,	such	as	generating	a	meme,	animations,	gig	posters,	or
comic	strip	on	Mozilla’s	Webmaker.org.	These	activities	teach	HTML	and	CSS,	so	you	might
avoid	them	if	you	think	exploring	different	syntax	will	confuse	your	students.

Bell-work	and	Attendance	[5	minutes]

Introduction	and	Homework	Distribution	[5	minutes]

1.	 Return	student	homework	packets,	or	have	students	place	their	returned	homework	in	a
pile	on	their	desk.

2.	 Explain	to	students	that	they	have	the	opportunity	to	get	full	credit	on	their	homework
grades	by	correcting	them	now,	in	class.	Ask	students	for	suggestions/ideas	on	how	to
make	sure	they	don’t	miss	any	errors.	(By	now	students	should	be	used	to	relying	on
their	error	checklist/algorithm.)

Student	Work	[35	minutes]

Have	students	work	individually	to	correct	their	homework	grades.

Offer	time	checks	for	students	so	they	stay	on	task.
If	students	have	not	finished	their	programming	project	from	yesterday’s	class,	allow
them	to	do	so	today.

Students	trade	work,	check,	and	turn	in	[10	minutes]

At	the	end	of	class,	have	students	trade	their	homework	assignments	to	evaluate	each
other’s	corrections	before	submission.

Accommodation	and	Differentiation

Lesson	3.08:	Finding	&	Fixing	Errors

212

http://www.webmaker.org

Students	that	don’t	have	corrections	to	make	should	be	rewarded	for	their	hard	work	with
silent	free	time.	Encourage	them	to	do	work	for	another	class,	read	the	next	chapter,	or	do	a
fun	programming	project	online.

If	you	have	a	student	that	appreciates	public	recognition,	have	them	serve	as	your	“TA”	this
class,	going	around	to	help	students	correct	their	papers.	Remind	them	to	guide	students
through	the	process	instead	of	just	giving	them	the	answers.

Forum	discussion
Lesson	3.08	Finding	&	Fixing	Errors	(TEALS	Discourse	account	required)

Lesson	3.08:	Finding	&	Fixing	Errors

213

http://forums.tealsk12.org/c/unit-3/3-08-finding-fixing-errors

Lesson	3.09	—	Relational	Operators	&
if/else

Overview

Objectives	—	Students	will	be	able	to…

Evaluate	relational	expressions
Predict	and	trace	the	flow	of	an	if	statement.

Assessments	—	Students	will…

Evaluate	relational	expressions	and	practice	correct	if	statement	syntax	during	a	game
of	grudgeball.

Homework	—	Students	will…

Read	BJP	4.1	“Nested	if/else”	and	“Object	Equality”
Complete	self-check	questions	7–9	and	exercises	1	&	2

Materials	&	Prep
Projector	and	computer	(optional)
Whiteboard	and	markers
Classroom	copies	of	Operator	Precedence
Rules	for	grudgeball	(see	website	for	details:
http://toengagethemall.blogspot.com/2013/02/grudgeball-review-game-where-kids-
attack.html)

Take	the	time	to	familiarize	yourself	with	the	rules	of	grudgeball,	and	test	out	your	2	and	3
point	lines	before	class	begins	(you	may	need	to	readjust	them).	If	you	can	get	permission
from	your	school	to	leave	tape	on	the	floor,	it	is	helpful	to	have	those	lines	down	for	the	rest
of	the	year.	In	future	classes,	if	your	students	are	having	a	hard	time	settling	down	during	a
review	session,	or	can’t	stand	a	worksheet,	you	can	always	convert	the	worksheet	or	review
session	into	a	quick	game	of	grudgeball.

Lesson	3.09:	Relational	Operators	&	if/else

214

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit3/Operator%20Precedence.pptx
http://toengagethemall.blogspot.com/2013/02/grudgeball-review-game-where-kids-attack.html

Pacing	Guide

Section Total	Time

Bell-work	and	attendance 5min

Introduction	&	note-taking 15min

Activity:	Grudgeball 35min

Procedure
Rather	than	drill	new	rules	with	worksheets,	the	drilling/activity	portion	of	the	class	will	serve
to	tie	the	lesson	together	in	the	form	of	a	class	competition.	If	space	and	whiteboard	setup
allow,	set	up	the	grudgeball	“court”	and	scoreboard	before	class	begins	so	as	to	mystify	the
students.

Bell-work	and	Attendance	[5	minutes]

Introduction	&	Note-Taking	[15	minutes]

Before	you	begin	lecture,	announce	to	students	that	they	should	pay	close	attention,	since
the	lecture	content	will	be	tested	during	the	game.

If	you	want	to	write	code	that	executes	some	of	the	time,	but	not	all	the	time,	you	can
write	an	if	statement	(ask	students	what	situations	might	use	an	if	statement—if	they
are	stuck,	ask	them	to	think	about	their	last	few	programming	projects!)

if	(test)	{									//	Boolean	Expression

				<statement>;				//	Control	Statement

				<statement>;				//	Control	Statement

}

Have	students	come	up	to	the	front	of	the	room	to	demonstrate	the	flow	of	control	of	the
if	control	structure.

Put	2	alternatives	together	by	using	an	if/else	statement:

Lesson	3.09:	Relational	Operators	&	if/else

215

if	(test)	{

				<statement>;

				<statement>;

}	else	{

				<statement>;

				<statement>;

}

So	what	should	students	put	in	the	“test”	section	to	evaluate	as	true	or	false?

						3	*	3																==												3	*	1	*	3

//	<expression>		<relational	operator>		<expression>

Evaluate	both	expressions,	then	see	if	the	relational	operator	holds	true	or	not.

Operators	students	need	to	know:

	==	:	equal	to
	!=	:	not	equal	to
	<		:	less	than
	>		:	greater	than
	<=	:	less	than	or	equal	to
	>=	:	greater	than	or	equal	to	|

As	far	as	precedence	goes:

relational	operators	have	a	lower	precedence	than	arithmetic	operators
relational	operators	have	higher	than	equality	operators
inequality	operators	(<	,		>	,		<=	,		>=)	have	higher	precedence	than	the	equality
operators	(==	,		!=)

	3	+	2	*	2	==	9		evaluates	to:		false	,	since		7		is	not	equal	to		9	.

Have	students	direct	you	how	to	solve	this.

If	you’d	like	to	refer	to	a	visual	aid	for	this	segment	of	the	introduction,	poster	3.16.2
illustrates	Java	rules	of	precedence	for	all	operators.

You	can	only	use	a	relational	operator	on	primitive	data	types!	(Ask	students	which
types	are	included,	which	ones	are	excluded.)

Activity:	Grudgeball	[35	minutes]	[Optional]

If	you	feel	like	your	class	has	a	grasp	on	the	syntax	and	relational	expressions,	consider
skipping	this	game	and	focusing	on	on-the-board	examples	(you	can	use	the	questions	from
Grudgeball	below)	or	moving	on	to	3.10.

Lesson	3.09:	Relational	Operators	&	if/else

216

1.	 Divide	students	into	their	assigned	teams.

2.	 Review	the	rules	for	grudgeball,	and	have	the	students	repeat	the	rules	back	to	you.

3.	 Using	the	problems	listed	below	(and	any	you	may	add,	depending	on	your	class’
needs),	play	grudgeball	until	a	team	wins,	or	until	the	class	period	ends.

i.	 If	a	class	gets	the	answer	wrong,	BRIEFLY	pause	the	game	to	have	students	offer
corrections	before	moving	to	the	next	team’s	question.

ii.	 If	correction	seems	to	be	dragging	on,	jump	in	and	quickly	re-teach	using	the
incorrect	answer	as	your	example.	It	is	important	to	keep	the	pace	going	to
maintain	student	interest	in	the	game!

4.	 Grudgeball	problems	&	answers	have	been	grouped	assuming	that	you	have	6	teams.	If
you	have	fewer	teams,	each	“round”	will	be	shifted	accordingly,	so	you	may	have
rounds	where	different	teams	are	practicing	different	concepts.	Judge	each	team’s
knowledge	gaps,	and	adjust	which	questions	you	ask	each	group	accordingly.

GRUDGEBALL	PROBLEMS

Translate	these	statements	into	logical	tests	that	could	be	used	in	an	if/else	statement.	Write
the	appropriate	if	statement	with	your	logical	test.

a)	z	is	odd.
b)	z	is	not	greater	than	y’s	squre	root.
c)	y	is	positive.
d)	Either	x	or	y	is	even,	and	the	other	is	odd.
e)	y	is	a	multiple	of	z.
f)	y	is	a	non-negative	one	digit	number.

Given	the	variable	declarations

		int	x	=		4;

		int	y	=	-3;

		int	z	=		4;

what	are	the	results	of	the	following	relational	expressions?	(True	or	False?)

g)		x	==	4	
h)		x	==	y	
i)		x	==	z	

Lesson	3.09:	Relational	Operators	&	if/else

217

j)		x	+	y	>	0	
k)		y	*	y	<=	z	
l)		x	*	(y	+	2)	>	y	–	(y	+	z)	*	2	

Correct	the	following	statement	syntax	errors:

m)		if	x	=	10	then	{	
n)		if	[x	=	10]	{	
o)		if	(x	equals	42){	
p)		if	(x	==y){	
q)		If	(x	>	8){	
r)		IF(x	<=	7){	

Identify	and	correct	one	of	the	(7)	errors	in	the	following	code:

public	class	Oops4	{

				public	static	void	main	(String[]	args)	{

								int	a	=	7,	b	=	42;

								minimum(a,b);

								if	{smaller	=	a}	{

												System.out.println("a	is	the	smallest!");

								}

				}

				//	Returns	the	minimum	of	the	parameters	a	and	b.

				public	static	void	minimum	(int	a,	int	b)	{

								if	(a	<	b)	{

												int	smaller	=	a;

								}	else	(a	=	b)	{

												int	smaller	=	b;

								}

								return	int	smaller;

				}

}

Accommodation	and	Differentiation
In	ELL	classrooms,	you	should	read	each	question	aloud	in	addition	to	showing	it	on	the
board	or	projector.

If	this	review	session	is	too	easy,	give	students	time	to	start	on	the	homework	once	you	have
finished	Grudgeball.

Lesson	3.09:	Relational	Operators	&	if/else

218

Teacher	Prior	CS	Knowledge
The	unary	not	operator		!		(commonly	read	as	“bang”)	is	commonly	used	in	logical
expressions	to	negate	a	boolean	value.	The	use	of	not	is	unique	among	the	logical
operators	as	it	takes	only	one	operand.	Not	is	analogous	to	the	negative	sign	(-)
where	a	minus	before	a	numeric	value	or	expression	represents	the	negative	of	the
value	whereas	a	not	(!)	before	a	boolean	value	represents	the	opposite	truth	value:
	true		becomes		false		and		false		becomes		true	.

Programming	languages	have	a	default	order	of	evaluating	expressions	commonly
referred	to	as	operator	precedence.	We	usually	teach	students	to	be	explicit	in	their
logical	expressions	for	clarity	and	to	avoid	mistakes.	However,	a	knowledge	of	the
languages	precedence	rules	is	valuable	when	both	reading	and	debugging	code.	See
the	following	for	Java’s	precedence	rules:
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html.	In	order	to
grade	correctly,	it	is	essential	to	know	Java’s	order	of	operations.

Common	Mistakes
Conditionals	common	mistakes:
http://interactivepython.org/runestone/static/JavaReview/Conditionals/cMistakes.html

Misconceptions
Confusing	the	assignment	operator	(=)	with	the	comparison	operator	(==)	is	one	of
the	most	common	mistakes	done	by	beginning	programmers.	Unfortunately,
semantically	a	single	equal	sign	is	used	to	denote	equality	in	mathematics	and	for	most
students	they	have	been	doing	math	much	longer	than	computer	science.

It	is	important	for	the	teacher	when	reading	code	aloud	to	differentiate	single	equals	as
assignment	and	double	equals	as	comparison.	The	following	would	be	read	as:

x	=	5;						//	“x	is	assigned	5”

if	(y	==	4)	//	“if	y	is	equal	to	4”

Many	students	think	all	statements	in	Java	end	in	a	semi-colon	(;).	However,	this	is
not	always	the	case	as	the	if-block	ends	in	curly	braces	when	used	with	a	block	of	code.
Students	in	the	habit	of	adding	semi-colons	to	the	end	of	each	statement	inevitably	add
semi-colons	at	the	end	of	the	conditional,	like	so:

Lesson	3.09:	Relational	Operators	&	if/else

219

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html
http://interactivepython.org/runestone/static/JavaReview/Conditionals/cMistakes.html

if	(a	>	1);	//	all	statements	end	in	semi-colon	misconception

When	teaching	students	about	Java	statements,	it	is	important	to	distinguish	between
statements	that	end	in	a	semi-colon	and	those	that	signify	scope	with	the	curly-braces.
Single	Java	statements	such	as	declaring	variables,	assignment,	etc.	end	in	semi-
colons	while	Java	statements	that	denote	scope	like	class	definitions	and	methods	have
curly	braces.	If-statements	can	do	both.

Logical	operators	AND	and	OR	are	covered	in	a	future	lesson.	However,	students	will
combine	logical	operators	similar	to	math	syntax:

if	(9	<=	grade	<=	12)	//	relational	operator	misconception

For	students	that	ask	about	compound	conditionals,	you	will	need	to	defer	and	state
they	will	be	covered	shortly	in	a	future	lesson.	For	students	with	prior	programming
experience	inevitably	searching	for	the	correct	syntax	since	the	English	words	“and”	and
“or”	do	not	work	in	Java.

One	common	error	is	mismatched	the	parentheses:

if	(a	==	10	//	mismatched	parentheses

or	mismatched	curly	braces:

if	(b	==	12)

				dozen	=	true;

}

Even	though	many	IDEs	will	help	students	by	providing	matching	parentheses,	a	good
habit	for	students	to	learn	when	writing	code	by	hand	is	to	add	the	closing	parentheses
right	after	they	write	the	open	parentheses.	The	same	is	true	for	open	and	close	curly
braces.	Students	will	need	to	learn	to	write	code	by	hand	for	the	AP	exam,	so	practice
hand	written	Java	is	important	to	students’	success.

In	addition,	good	coding	style	with	proper	indenting	helps	with	student	recognition	of
mismatched	closing	parentheses	and	curly	braces	because	of	the	visual	pattern.	Good
programming	style	makes	it	easier	to	identify	errors	in	the	pattern.	This	can	be	used
during	lab	for	students	with	mismatched	parentheses	and/or	curly	braces.	Instead	of
find	the	error,	asking	the	student	to	clean	up	their	indenting	will	help	them	find	errors	on
their	own.

Lesson	3.09:	Relational	Operators	&	if/else

220

When	constructing	if-statements,	students	insert	the	condition	of	the	if-statement	within
the	brackets	instead	of	the	parentheses:

if	{a	>	1}	//	conditional	vs	block	misconception

See	above	“mismatched	the	parentheses”	for	good	programming	practice.

Video
BJP	4–2,	Nested	if/else	Statements	(note:	title	of	video	is	mislabeled,	should	be	“if/else
Statements”)
http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c4-2

CSE	142,	if/else	Statements	(38:41-50:15)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=0c247411-e890-4835-
8a79-bee6e74066c2&start=2321

CSE	142,	Methods	with	Conditional	Execution	(4:08-18:39)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=fc356a4a-92a2-4038-
9b89-90ea0ffa4533&start=248

CS	Homework	Bytes,	Relational	and	Conditional	Operators,	with	Elizabeth
https://www.youtube.com/watch?v=M-mYpnPygY0

CS	Homework	Bytes,	If-Statements,	with	Jim
https://www.youtube.com/watch?v=SxWFYfA4i0M

Forum	discussion
Lesson	3.09	Relational	Operators	&	if/else	(TEALS	Discourse	account	required)

Lesson	3.09:	Relational	Operators	&	if/else

221

http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c4-2
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=0c247411-e890-4835-8a79-bee6e74066c2&start=2321
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=fc356a4a-92a2-4038-9b89-90ea0ffa4533&start=248
https://www.youtube.com/watch?v=M-mYpnPygY0
https://www.youtube.com/watch?v=SxWFYfA4i0M
http://forums.tealsk12.org/c/unit-3/3-09-relational-operators-if-else

Lesson	3.10	—	Nested	if/else	Statements

Overview

Objectives	—	Students	will	be	able	to…

Choose	which	if	statements	to	use	for	different	problems
Use	correct	syntax	for	the	different	if	statements

Assessments	—	Students	will…

Teach	a	mini-lesson	on	sequential	or	nested	if	statements
Submit	several	Practice-It	questions

Homework	—	Students	will…

Read	BJP	4.1	“Factoring	if/else	Statements”	and	“Testing	Multiple	Conditions”
Complete	exercises	4	and	5

Materials	&	Prep
Projector	and	computer	(optional)
Whiteboard	and	markers
Group	copies	of	WS	3.10
Poster	paper,	construction	paper,	white	paper,	and	lined	paper
Markers,	tape,	and	glue	sticks
Classroom	copies	of	textbooks
Student	group	assignments	(3-6	groups)

Have	all	materials	out	on	student	desks,	or	conveniently	laid	out	for	students	to	help
themselves	to	so	they	can	start	right	away,	with	minimal	instruction	from	you.	Don’t	forget	to
circle	which	if/else	statements	students	should	be	presenting	on.

Pacing	Guide

Lesson	3.10:	Nested	if/else	Statements

222

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit3/WS%203.10.docx

Section Total	Time

Student	practice 20min

Student	mini-lessons 15–25min

Practice-It	exercises 15min

Procedure
Your	hook	for	today’s	lesson	is	to	turn	the	reins	over	to	students	immediately.	Have
instructions	printed	out	and	sitting	at	team	work	stations	(or	on	student	desks).	Make
students	answer	their	own	questions	using	the	instruction	sheet	and	text	book.

Student	Practice	[20	minutes]

Give	students	20	minutes	to	prepare	their	presentation.	Use	a	timer	and	periodically
announce	how	much	time	is	left	in	class	so	students	can	pace	themselves.

Student	Mini-Lessons	[15	minutes]

1.	 Give	students	5	minutes	per	team	to	present	their	topic.

2.	 Encourage	students	to	ask	questions,	and	be	sure	to	ask	a	question	or	two	of	each
team	(depending	on	how	many	teams	you	have).

Worksheet	[15	minutes]

Leave	about	10–15	minutes	at	the	end	of	class	for	students	to	individually	complete
Practice-It	questions:

1.	 ifElseMystery1
2.	 ifElseMystery2
3.	 season

Accommodation	and	Differentiation
Circle	around	the	room	to	help	students	through	reading	the	text	in	the	textbook.	Make	sure
that	each	of	your	working	teams	are	properly	stratified	(rather	than	using	tiered	grouping).

If	students	are	speeding	along,	encourage	students	to	write	down	questions	to	pose	to	other
groups	during	mini-lessons.

Lesson	3.10:	Nested	if/else	Statements

223

Forum	discussion
Lesson	3.10	Nested	if/else	Statements	(TEALS	Discourse	account	required)

Lesson	3.10:	Nested	if/else	Statements

224

http://forums.tealsk12.org/c/unit-3/3-10-nested-if-else-statements

Lesson	3.11	—	Reducing	Redundancy

Overview

Objectives	—	Students	will	be	able	to…

Simplify	code	and	reduce	redundancy	by	factoring	if/else	statements	and	testing
multiple	conditions	simultaneously.

Assessments	—	Students	will…

Complete	a	class	competition

Homework	—	Students	will…

Read	BJP	4.2
Finish	outlining	Chapter	4,	excluding	sections	4.3,	4.4,	and	4.5

Materials	&	Prep
Projector	and	computer	(optional)
Whiteboard	and	markers
Rosters	for	class	teams

The	teams	for	today’s	competition	should	be	tiered.	Depending	on	the	size	of	your	class,	you
should	aim	for	4	teams	or	teams	of	4	people.

Pacing	Guide

Section Total	Time

Bell-work	and	attendance 5min

Reviewing	procedures	and	forming	groups 5min

Competition	question	1 15min

Competition	question	2 15min

Students	begin	outlining	Chapter	4 15min

Lesson	3.11:	Reducing	Redundancy

225

Procedure
As	your	hook,	grandly	announce	a	class	competition	between	teams	and	announce	the	prize
for	the	winning	team	(this	might	be	TEALS	swag,	bonus	classroom	participation	points,	or
additional	raffle	entries	in	the	year-end	TEALS	giveaway).	Use	this	class	competition	as	an
assessment	to	determine	how	much	re-teaching	you	need	to	do.

Bell-work	and	Attendance	[5	minutes]

Reviewing	Procedures	and	Forming	Groups	[5	minutes]

Announce	class	teams	and	rearrange	students	as	needed.

Competition	Question	1	[15	minutes]

Give	students	5	minutes	to	complete	the	challenge,	and	take	note	of	which	team	finishes
first.

If	students	are	struggling,	you	may	extend	the	time,	or	offer	universally	helpful	tips	(e.g.
“If	you	see	parentheses	that	aren’t	being	used	to	establish	precedence,	or	to	cast,	it
means	you’re	calling	another	method.”)

The	team	that	has	the	correct	answer	first	wins	the	prize.

Review	student	answers	together	as	a	whole	group,	revisiting	concepts	taught	earlier	in
the	week	as	mistakes	come	up.	Whenever	possible,	have	students	volunteer	the	correct
procedure,	approach,	or	code.	Encourage	students	to	take	notes	during	this	process	so
they	can	review	topics	outside	of	class.

COMPETITION	QUESTION	1

Factor	out	redundant	code	from	the	following	example	by	moving	it	out	of	the	if/else
statement,	preserving	the	same	output.

if	(x	<	30)	{

				a	=	2;

				x++;

				System.out.println("Spongebob	Squarepants!	"	+	x);

}	else	{

				a	=	2;

				System.out.println("Spongebob	Squarepants!	"	+	x);

}

Lesson	3.11:	Reducing	Redundancy

226

Competition	Question	2	[15	minutes]

Once	you’ve	completed	this	exercise,	offer	up	the	second	challenge	question,	as	before.
This	question	may	take	up	to	10	minutes	for	students	to	complete.

COMPETITION	QUESTION	2

Rewrite	the	poorly-structured	code	given	here,	so	it	avoids	redundancy.	For	the	case	of	this
competition,	you	can	assume	that	the	user	always	inputs	1	or	2.

int	sum	=	1000;

Scanner	console	=	new	Scanner(System.in);

System.out.print("Is	your	money	multiplied	1	or	2	times?	");

int	times	=	console.nextInt();

if	(times	==	1)	{

				System.out.print("And	how	much	are	you	contributing?	");

				int	donation	=	console.nextInt();

				sum	=	sum	+	donation;

				count1++;

				total	=	total	+	donation;

}

if	(times	==	2)	{

				System.out.print("And	how	much	are	you	contributing?	");

				int	donation	=	console.nextInt();

				sum	=	sum	+	2	*	donation;

				count2++;

				total	=	total	+	donation;

}

Students	Begin	Outlining	Chapter	4	[15	minutes]

Once	you	have	completed	the	competition	and	review,	have	students	begin	outlining
Chapter	4.	Whatever	they	do	not	finish	outlining	they	should	complete	tonight	for	homework.

Accommodation	and	Differentiation
Circle	around	the	room	to	help	students	through	reading	the	text	in	the	textbook.	Make	sure
that	each	of	your	working	teams	are	properly	stratified	(rather	than	using	tiered	grouping).	If
you	teach	in	an	ELL	classroom,	you	may	opt	to	change	the	assignment	so	that	all	the	lines
of	code	are	present,	but	shuffled	out	of	order	(as	a	Parsons-type	Problem).

If	students	are	speeding	along,	encourage	students	to	write	down	questions	to	pose	to	other
groups	during	mini-lessons.

Lesson	3.11:	Reducing	Redundancy

227

Video
BJP	4-3:	Factoring	if/else
http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c4-3

CSE	142:	Factoring	if/else	Statements	and	Reasoning	about	Paths	(18:40-34:05)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=fc356a4a-92a2-4038-
9b89-90ea0ffa4533&start=248

Forum	discussion
Lesson	3.11	Reducing	Redundancy	(TEALS	Discourse	account	required)

Lesson	3.11:	Reducing	Redundancy

228

http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c4-3
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=fc356a4a-92a2-4038-9b89-90ea0ffa4533&start=248
http://forums.tealsk12.org/c/unit-3/3-11-reducing-redundancy

Lesson	3.12	—	Cumulative	Algorithms

Overview

Objectives	—	Students	will	be	able	to…

Find	and	correct	syntax	errors	in	conditional	cumulative	algorithms.

Assessments	—	Students	will…

Write,	modify,	and	correct	programs	written	by	others.

Homework	—	Students	will…

Read	BJP	5.1	(skip	“do/while	Loops”)
Complete	Chapter	4	Programming	Project	#2

Materials	&	Prep
Projector	and	computer	(optional)
Whiteboard	and	markers
Classroom	copies	of	WS	3.12
Plastic	binder	sleeves	(1	per	student)

Pacing	Guide

Section Total	Time

Bell-work	and	attendance 5min

Introduction	to	cumulative	algorithms	and	min/max	loops 15min

Programming	Activity	–	Programmer	1	input 10min

Programming	Activity	–	Programmer	2	input 15min

Programming	Activity	–	Edits	and	Reflection 10min

Procedure

Lesson	3.12:	Cumulative	Algorithms

229

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit3/WS%203.12.docx

Bell-work	and	Attendance	[5	minutes]

Introduction	to	Cumulative	Algorithms	and	Min/Max	Loops
[15	minutes]

1.	 As	your	hook,	conduct	an	experiment	with	your	students:

Announce	that	you’re	going	to	read	a	list	of	six	numbers	between	1	and	100,	and
the	first	person	who	is	done	calculating	the	sum	correctly	wins	[classroom	reward	of
your	choice].

Students	should	indicate	they	are	done	calculating	by	raising	their	hand.	Explain
that	you	will	keep	track	of	raised	hands,	and	that	you’ll	call	on	each	person	until	you
encounter	the	correct	answer.

Read	off	the	numbers,	and	keep	track	of	who	finshes	early,	and	who	finishes	late.
Ask	students	how	they	computed	their	answers.

You’re	looking	for	an	answer	from	the	“quick”	students	that	they	kept	a	running	tally,
and	that	the	“late”	students	that	they	added	all	the	numbers	at	the	end.

2.	 Now	propose	that	you	want	to	tally	sixteen	numbers.	Ask	students	how	students	what
method	you	should	use,	and	ask	them	to	describe	the	algorithm	for	solving	the	problem
using	pseudocode.

Translate	the	pseudocode	into	a	loop	using	the	following	example:	use	a	for	loop
with	a	code	for	adding	using	keyword	sum:

int	sum	=	0;

We	always	initialize	at	0,	because	sum	needs	an	initial	value	to	start	with.

for	(all	numbers	to	sum)	{	
				obtain	“next”	with	Scanner	
				sum	+=	next

This	is	pseudocode!	In	real	life,	we’d	begin	with	building	a	scanner	in	the	main
method.	Let’s	look	at	some	real	code	here.	Since	we	know	we	want	user	input,
what	is	the	first	thing	we	do	before	creating	our	class?

import	java.util.*;

3.	 Now	we	create	our	class	and	main	method	(have	students	tell	you	what	to	do):

Lesson	3.12:	Cumulative	Algorithms

230

public	class	ExamineNumbers1	{

				public	static	void	main	(String[]	args)	{

								System.out.println("This	program	adds	your	numbers.");

								System.out.println();

4.	 Add	our	Scanner	(have	students	give	you	the	code):

								Scanner	scanner	=	new	Scanner(System.in);

								System.out.print	("How	many	numbers	do	you	want	to	add?");

								int	totalNumber	=	scanner.nextInt();

5.	 And	finally	our	loop	with	the	sum	keyword:

								double	sum	=	0.0;																												//	By	using	totalNumber	inste

ad

								for	(int	j	=	1;		j	<=	totalNumber;		j++)	{			//	of	an	actual	number,	we	gi

ve

												System.out.print("#"	+	j	+	"?	");								//	our	program	flexibility.

												double	next	=	scanner.nextDouble();

												sum	+=	next;

								}

Be	sure	to	briefly	discuss	the	use	of		double		vs.		int		(where	would	you	have	to
change	code	if	you	wanted		int	?),	the	variable		i		vs.		j		(you	can	make	it	anything	as
long	as	you’re	consistent),	and	variables		next		and		sum	.

6.	 Finally	we	have	to	add	the	code	that	returns	the	sum	so	that	the	user	can	see	the	result:

								System.out.println	();

								System.out.println	("Your	numbers	add	to	"	+	sum);

				}

}

7.	 Invite	3	students	up	to	the	board	(now	that	the	complete	program	is	written)

One	student	acts	as	Java	to	trace	flow	of	control	(this	student	narrates	what	is
happening	on	each	line)

Another	student	acts	as	console	output,	writing	output	as	Java	creates	it

Try	to	have	console	output	written	on	the	same	area	of	the	board	each	time	you	do
this	type	of	exercise.

The	other	student	acts	as	the	values	being	stored	in	sum	and	next

Lesson	3.12:	Cumulative	Algorithms

231

This	student	should	be	writing	their	values	in	a	location	on	the	board	that	you
never	use	for	writing	console	output.	Reserving	a	physical	space	for	“internal
workings	we	don’t	see”	will	help	students	keep	execution	vs.	output	separate.

Seated	students	should	help	the	student	figure	out	what	the	values	in	sum	and
next	are	being	updated	to	with	each	execution	of	the	loop.

Get	sample	user	input	from	the	class.

If	that	example	went	well,	move	on	to	min/max	loops;	otherwise,	work	through	the
example	with	new	user	input.	To	scaffold	this	activity,	use	whole	numbers	and	keep
the	loop	short.

As	students	continue	to	work	on	their	sample	game,	they	may	want	to	track
minimum	or	maximum	scores.	Ask	for	student	examples	of	when	this	might	be	the
case	(e.g.	success	in	the	fewest	number	of	steps,	maximum	score)

8.	 In	this	case	we	stick	with	the	for	loop	control	structure,	but	modify	it	to	keep	track	of
whether	the	newest	value	is	larger	than	(or	smaller	than)	the	values	the	user	has	input
to	Java	so	far:

//	Initialize	max	to	lowest	possible	value	or	to	first	value.
for	(all	numbers	to	compare)	{
				obtain	"next"	with	scanner
				if	(next	>	max)											//	or:	if	(next	<	min)	{
								max	=	next												//	min	=	next

Let’s	build	a	real	program	with	this:

int	min	=	value;

int	max	=	value;

for	(int	i	=	1;	i	<	length;	i++)	{

				Scanner	gets	next	number

				if	(value	>	max)	{

								max	=	value;

				}	else	if	(value	<	min)	{

								min	=	value;

				}

}

9.	 Ask	students	to	discuss	what	this	program	does.	If	a	more	concrete	example	is	needed,
work	through	the	first	programming	question	together	as	a	whole	class.	Encourage
students	to	tell	you	what	code	to	write	down	for	each	step,	as	much	as	possible.

Programming	Activity	–	Programmer	1	Input	[10	minutes]

Lesson	3.12:	Cumulative	Algorithms

232

1.	 Hand	out	WS	3.12

2.	 Read	the	instructions	on	the	sheet	aloud,	then	ask	students	to	explain	them	back	to
you.

Ask	students	why	pseudocode	is	so	important	to	include	in	this	exercise.

Explicitly	point	out	the	space	for	a	structure	diagram	or	program	outline.	Ask
students	why	this	is	such	an	important	structure	to	include.

Make	sure	that	students	are	programming	in	pen,	not	in	pencil,	so	that	all	editing
steps	are	visible.

3.	 Give	students	10	minutes	to	build	the	first	part	of	the	program.

If	students	are	struggling,	you	may	extend	the	time,	or	offer	universal	helpful	tips.

Programming	Activity	–	Programmer	2	Input	[15	minutes]

Have	students	trade	papers	with	their	assigned	programming	partner.

1.	 Remind	students	to	add	their	name	to	the	paper	as	“programmer	2.”
2.	 Give	students	another	15	minutes	to	build	on	the	program	and	make	edits.

Programming	Activity	–	Edits	and	Reflection	[10	minutes]

Have	students	return	each	others’	papers,	and	have	the	first	student	make	edits	and	fill	in
the	comment	section.

Accommodation	and	Differentiation
As	a	“running	activity,”	have	your	students	create	a	new	blank	sheet	titled	“Tricky	Code
Cheat	Sheet,”	and	give	them	a	plastic	sleeve	to	protect	this	reference	sheet	in	their	binder.
Encourage	students	to	start	writing	down	hints,	tips,	and	useful	snippets	of	code	that	they
can	refer	to	during	homework,	classwork,	programming	projects,	and	even	tests.

Every	time	you	encounter	a	useful	snippet	of	code,	recommend	that	students	include	it	on
their	“Cheat	Sheet,”	so	students	can	drill	the	useful	code	throughout	the	year.	Some	tricks
that	show	up	on	the	AP	include:

Using		%	2	==	0		to	identify	even	numbers,	use		%	2	==	1		to	identify	odd	numbers.

To	find	the	last	digit	of	a	large	number,	use		%	10	.

Tips	from	today’s	class	would	include:

Lesson	3.12:	Cumulative	Algorithms

233

To	keep	a	running	total,	use	sum	in	a	for	loop	(initialize	to	0,	put	the	range	of	numbers	in
the	loop	header).

To	access	the	min	or	max	value,	use	an		if	/	else		statement	(initialize	to	first	or
highest/lowest	number,	put	data	range	in	for	loop	header).

Ask	students	what	a	tip	for	Scanner	would	look	like,	or	a	tip	for	when	to		import	java.util.*	

Video
BJP	4-4,	Programming	with	if/else	and	Cumulative	Sums
http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c4-4

CSE	142,	Cumulative	Sum	(23:07-38:40)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=0c247411-e890-4835-
8a79-bee6e74066c2&start=1387

Forum	discussion
Lesson	3.12	Cumulative	Algorithms	(TEALS	Discourse	account	required)

Lesson	3.12:	Cumulative	Algorithms

234

http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c4-4
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=0c247411-e890-4835-8a79-bee6e74066c2&start=1387
http://forums.tealsk12.org/c/unit-3/3-12-cumulative-algorithms

Lesson	3.13	—	while	Loops

Overview

Objectives	—	Students	will	be	able	to…

Trace	while	loops	to	predict:
The	number	of	times	the	body	executes
The	output	of	the	code

Differentiate	between	while	loops,	if	statements,	and	for	loops

Assessments	—	Students	will…

Complete	Practice-It	questions

Homework	—	Students	will…

Read	BJP	5.1	“Random	Numbers”
Complete	self-check	questions	#1-4	and	exercise	2

Materials	&	Prep
Projector	and	computer
Whiteboard	and	markers
Classroom	copies	of	WS	3.13

Pacing	Guide

Section Total	Time

Bell-work	and	attendance 5min

Introduction	&	think-pair-share 15min

Student	Practice-It	activity 35min

Procedure

Lesson	3.13:	while	Loops

235

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit3/WS%203.13.docx

Bell-work	and	Attendance	[5	minutes]

Introduction	&	Think-Pair-Share	[15	minutes]

1.	 Ask	students	to	offer	pseudocode	that	explains	how	they	might	track	damage	to	a
Pokemon.

(Student	answers	should	include	some	of	these	steps:	Start	with	initial	HP,	and
while	HP	is	greater	than	0,	ask	how	much	damage,	subtract	it,	and	end	print	with
“Pokemon	fainted!”)	Point	out	that	this	process	has	no	predetermined	length
(indefinite	looping),	so	you	need	to	use	a	new	type	of	loop	called	a	while	loop.

If	students	need	additional	examples	of	indefinite	looping,	use	a	simpler	example,
asking	students	how	they	would	double	a	number	until	it	was	bigger	than	N.

2.	 Engage	students	in	the	introduction	today	by	having	students	complete	the	graphic
organizer	on	WS	3.13	as	you	review	the	structure,	flow,	and	syntax	of	the	while	loop.

3.	 Compare	and	contrast	the	while	and	for	loops	(see	code	snippets	below):	both	are
control	structures	that	send	the	flow	of	control	through	a	loop,	but	scope	differs,	so	the
loops	execute	in	different	ways.

Have	students	point	out	where	i	is	declared.

Introduce	the	concept	of	definite	vs.	indefinite	loops	and	ask	students	when	they
might	want	to	use	an	indefinite	loop	(they	will	probably	have	wanted	to	use	this
structure	in	their	earlier	programming	projects—prompt	them	with	this	if	no	one
volunteers	an	example).

Call	2	students	up	to	the	board;	one	to	trace	the	flow	of	control	and	the	other	write
the	output.

//	while	loop:																						//	for	loop:

int	i	=	0;																										for	(int	i	=	0;	i	<	10;	i++)	{

while	(i	<	10)	{																				System.out.println	(i);

				System.out.println	(i);									}

				i++;

}

4.	 Invite	students	to	Think-pair-share	on	the	following	example:

Lesson	3.13:	while	Loops

236

int	n	=	91;

int	factor	=	2;

while	(n	%	factor	!=	0)	{

				factor	++;

}

System.out.println("First	factor	is	"	+	factor);

How	many	times	does	this	loop	execute?	What	is	the	output?

In	the	same	pairs,	have	students	rewrite	the	while	loop	as	a	for	loop.

Student	Practice-It	Activity	[35	minutes]

1.	 Have	students	complete	the	following	Practice-It	problems:

i.	 whileLoops
ii.	 forToWhile
iii.	 whileLoopMystery1
iv.	 whileLoopMystery2

2.	 If	students	complete	these	problems	with	time	to	spare,	have	them	complete	Practice-It
exercise	“gcd.”

Accommodation	and	Differentiation
If	students	are	having	difficulty	tracing	while	loops,	using	proper	syntax,	or	predicting	the
output	of	the	loop,	you	can	change	the	Practice-It	exercise	to	a	reciprocal	teaching	exercise,
where	¼	of	the	class	does	each	problem,	and	they	come	to	the	front	of	the	room	to	explain
their	solution	and	process	to	the	rest	of	the	class.

If	you	have	students	that	finished	the	classwork	ahead	of	time,	encourage	them	to	explore
do/while	loops	(which	are	NOT	part	of	the	AP	subset).

Common	Mistakes
Loops	common	mistakes:
http://interactivepython.org/runestone/static/JavaReview/LoopBasics/lMistakes.html

Video
CSE	142,	While	Loop	(11:21-15:55)

Lesson	3.13:	while	Loops

237

http://interactivepython.org/runestone/static/JavaReview/LoopBasics/lMistakes.html

https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=f9874ea5-8d4d-4bf1-
8924-ded454847a58&start=681

Forum	discussion
Lesson	3.13	while	Loops	(TEALS	Discourse	account	required)

Lesson	3.13:	while	Loops

238

https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=f9874ea5-8d4d-4bf1-8924-ded454847a58&start=681
http://forums.tealsk12.org/c/unit-3/3-13-while-loops

Lesson	3.14	—	Random	Numbers
N.B.	THIS	LESSON	IS	OPTIONAL
(While	Math.random	might	be	included	on	the	AP	exam,	the	Random	class	is	not	part	of	the
AP	subset.)

Overview

Objectives	—	Students	will	be	able	to…

Write	expressions	that	generate	a	random	integer	between	any	two	values.

Assessments	—	Students	will…

Complete	Practice-It	questions

Homework	—	Students	will…

Read	BJP	5.2
Complete	programming	project	1

Materials	&	Prep
Projector	and	computer
Whiteboard	and	markers

Pacing	Guide

Section Total	Time

Bell-work	and	attendance 5min

Introduction	and	think-pair-share 15min

Student	Practice-It	activity 35min

Procedure

Lesson	3.14:	Random	Numbers

239

Hook	your	class	by	talking	about	randomized	tasks	that	arise	in	games	they	may	play.	For
example:

Create	an	enemy	that	spawns	after	some	random	amount	of	time,	but	between	7	and
23	seconds.

Pick	a	random	item	from	a	list	of	100	words	the	user	needs	to	guess	in	Hangman

Create	a	new	username	between	6	and	10	characters	picking	randomly	what	each
character	is,	from	lower/capital	letters	and	numbers.

Make	a	ball	bounce,	but	not	precisely,	by	adding	random	angles	to	the	bounce.

Bell-work	and	Attendance	[5	minutes]

Introduction	and	Think-Pair-Share	[15	minutes]

1.	 Once	students	have	all	had	a	chance	to	explore	the	dice,	show	them	how	to	generate
random	numbers	that	they	can	use	in	their	game	program,	computer	simulations,	or
security	programs	(moving	forward).

Construct	a	random	object	(see	if	anyone	can	tell	you	how	to	do	this	from	their
reading	last	night):

Random	r	=	new	Random();

Call	the	nextInt	method,	passing	the	upper	limit	of	the	range	of	your	random
number	(in	the	case	of	a	6	sided	dice,	this	would	be	6).

result	=	r.nextInt(6);					//	Gives	you	a	random	number	between	0	-	5.

Does	this	code	accurately	simulate	a	six	sided	dice?	(Have	students	with	the	six-
sided	dice	answer	your	question.)	To	shift	that	result	between	1	and	6,	you	need	to
add	1	to	your	code:

result	=	r.nextInt(6)	+	1;					//	Gives	a	random	number	between	1	-	6.

Output	the	result:

System.out.println("You	rolled	a	"	+	result);

2.	 Give	students	a	few	minutes	to	do	a	Think-Pair-Share	for	the	following	questions:

Lesson	3.14:	Random	Numbers

240

Write	an	expression	that	simulates	a	roll	of	a	20	–	sided	dice.
Write	an	expression	that	yields	a	random	number	between	0.0	and	1.0.

3.	 Review	Table	5.2	from	the	book	as	you	discuss	the	answers	in	a	whole	group.

	nextInt()		=	random	integer	between	-2^31	and	(2^31	–	1)
	nextInt(max)		=	random	integer	between	0	and	(max	–	1)
	nextDouble()		=	random	real	number	between	0.0	and	1.0
	nextBoolean()		=	random	logical	value	of	true	or	false
Priming	the	loop:	remind	students	that	they	must	initialize	variables	before	the	loop
(this	makes	sure	that	Java	knows	how	to	enter/start	the	loop).

Student	Practice-It	Activity	[35	minutes]

1.	 Have	students	complete	the	following	Practice-It	self-check	problems:

a.	randomRangeABCDE
b.	randomInteger0to1
c.	randomOddInteger50to99

2.	 If	students	complete	these	problems	with	time	to	spare,	have	them	complete	Practice-It
exercises:

a.	randomX
b.	randomLines

Accommodation	and	Differentiation
If	students	are	having	difficulty	tracing	while	loops,	using	proper	syntax,	or	predicting	the
output	of	the	loop,	you	can	change	the	Practice-It	exercise	to	a	reciprocal	teaching	exercise,
where	1/5	of	the	class	does	each	problem,	and	they	come	to	the	front	of	the	room	to	explain
their	solution	and	process	to	the	rest	of	the	class.

If	you	have	students	that	finished	the	classwork	ahead	of	time,	encourage	them	to	complete
Practice-It	Exercise	threeHeads.

Video
BJP	5–1,	Random	Numbers
http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c5-1

CS	Homework	Bytes,	Random	Numbers,	with	Elizabeth
https://www.youtube.com/watch?v=R0MqnEofFvs

Lesson	3.14:	Random	Numbers

241

http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c5-1
https://www.youtube.com/watch?v=R0MqnEofFvs

CSE	142,	Random	Numbers	(11:12–17:17)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=fe3ea547-6068-4e56-
ab0b-e8f8605dd836&start=672

CSE	142,	Guessing	Game	(17:18–37:13)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=fe3ea547-6068-4e56-
ab0b-e8f8605dd836&start=1038

Forum	discussion
Lesson	3.14	Random	Numbers	(TEALS	Discourse	account	required)

Lesson	3.14:	Random	Numbers

242

https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=fe3ea547-6068-4e56-ab0b-e8f8605dd836&start=672
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=fe3ea547-6068-4e56-ab0b-e8f8605dd836&start=1038
http://forums.tealsk12.org/c/unit-3/3-14-random-numbers

Lesson	3.15	—	Fencepost	&	Sentinel
Loops

Overview

Objectives	—	Students	will	be	able	to…

Describe	when	to	use	fencepost	and	sentinel	loops.
Use	proper	syntax	to	construct	these	control	structures.

Assessments	—	Students	will…

Teach	a	mini-lesson	explaining	the	relationship	between	parameters	and	values	stored
in	memory

Homework	—	Students	will…

Read	BJP	5.3
Complete	exercises	#6	&	8
Summarize	all	of	your	daily	notes	if	not	already	done

Materials	&	Prep
Projector	and	computer
Whiteboard	and	markers
Group	copies	of	WS	3.15
3	or	more	classroom	copies	of	the	textbook

Pacing	Guide

Section Total	Time

Bell-work	and	attendance 5min

Mini-lesson	planning	&	prep 15min

Student	presentations	&	practice 30min

Lesson	3.15:	Fencepost	&	Sentinel	Loops

243

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit3/WS%203.15.docx

Procedure
Today	3	student	teams	will	teach	a	lesson	on	fencepost	algorithms,	sentinel	loops,	or
sentinel	loops	with	if	statements.	Your	hook	will	be	to	turn	the	class	over	to	students	as	soon
as	they	enter.	Student	groups	are	expected	to	generate	sample	questions;	let	students	know
that	you	will	collect	those	questions	to	use	on	quizzes	or	as	bellwork.

Bell-work	and	Attendance	[5	minutes]

On	the	board,	on	the	projector,	or	in	a	group	handout,	let	students	know	that	they	need	to
prepare	a	5	minute	lesson	and	a	2-	5	minute	class	activity	to	teach	their	topic.	Use	the
grading	rubric	as	outlined	here:

3	pts. 2	pts. 1	pts. 0	pts.

Presentation
includes
definitions	and
an	example	with
proper	syntax.

Presentation
includes
definitions	or	an
example	with
proper	syntax.

Presentation
includes	definitions
or	an	example	with
proper	syntax	with
one	mistake.

Presentation	includes
definitions	or	an
example	with	proper
syntax	with	many
mistakes.

Presentation
includes	a	non-
example	as
helpful	contrast.

Presentation
includes	a	non-
example	that	is
marginally
helpful.

Presentation
includes	a	non-
example	that	does
not	add	to
comprehension.

Presentation	includes	a
non-example	that	adds
confusion,	or
presentation	does	not
include	a	non-example.

Presentation
includes	a
helpful	tip	that	is
clearly
explained	and
concisely	stated.

Presentation
includes	a
helpful	tip	that	is
clearly
explained	or
concisely
stated.

Presentation
includes	a	helpful
tip	that	is	not	clearly
explained	and	may
include	a	small
error.

Presentation	does	not
include	a	helpful	tip	or
hint.

Mini-Lesson	Planning	&	Prep	[15	minutes]

1.	 Assign	each	group	a	subsection	of	section	5.2	“Fencepost	Algorithms,”	and	make	sure
that	you	circle	that	assignment	on	each	groups’	copy	of	WWS	3.15.	Student	groups
should	take	15	minutes	to	review	their	section,	re-read	the	example	on	the	pages
following	the	example,	then	figure	out	how	they	want	to	explain	the	algorithm	to	the
class.

2.	 On	the	board	or	overhead,	give	students	a	few	things	they	should	consider	in	planning
their	mini	lesson:

a.	Who	is	going	to	speak	when?

Lesson	3.15:	Fencepost	&	Sentinel	Loops

244

b.	How	are	you	going	to	illustrate	the	flow	of	control?

c.	What	do	you	need	to	have	up	on	the	board	to	illustrate	your	mini-lesson,	and	who	is
in	charge	of	writing	it	out?

d.	Where	and	how	will	you	feature	the	output	produced	by	your	code	segment?

e.	What	is	your	mini-activity	going	to	look	like?	(You	might	want	to	assign	1–2	people	to
work	on	this	section	while	the	rest	of	the	group	works	on	the	lesson.)

3.	 Have	student	groups	sequentially	teach	through	fencepost	algorithms,	sentinel	loops,
and	fenceposts	with		if		statements.

4.	 Encourage	students	to	add	these	strategies	to	their	Tricky	Code	Cheat	Sheet.

Student	Presentations	&	Practice	[30	minutes]

Accommodation	and	Differentiation
If	your	class	learns	better	through	tactile	or	visio-spatial	learning,	you	can	change	this
assignment	to	a	make-a-poster	lesson,	having	students	work	in	pairs	or	triplets	to	create	an
informative	poster	on	one	of	the	topics.	If	you’re	fortunate	enough	to	have	a	theatrical	or
musical	class,	invite	them	to	create	a	song,	poem,	or	narrated	dance/play	that	teaches	their
topic.	For	poems	or	songs,	encourage	students	to	write	them	out	or	record	them	so	you	can
display	them	around	your	room.

Common	Student	Questions
Since	your	student-instructors	won’t	be	able	to	answer	in-depth	questions	on	their	topic,	you
should	be	ready	to	assist	during	the	Q	&	A	section	of	their	lesson.	Some	student	questions
that	have	popped	up	in	the	past,	with	their	answers,	are	listed	below:

1.	 The	sentinel	loop	example	in	the	book	says	that	the	sentinel	value	will	be	read	and
added	to	the	sum	unless	we	do	a	fencepost	algorithm	or	if	statement.	Why	is	that?
Doesn’t	the	test	evaluate	to	false	and	terminate	the	loop?

Write	an	example	on	the	board	in	pseudocode	or	actual	code,	and	trace	the	flow	of
control	with	your	marker.	In	this	case,	the	pseudocode	in	the	book	is	a	bit	misleading
because	it	looks	like	the	test	will	terminate	in	the	header.	The	prompt	for	the	sentinel	is
already	in	the	loop	body,	so	the	sentinel	will	be	evaluated	before	loop	termination.

Lesson	3.15:	Fencepost	&	Sentinel	Loops

245

If	you	think	your	class	will	be	comfortable,	instruct	your	teaching	group	to	do	this
illustration,	and	just	help	along.

2.	 What	do	you	do	if	you	don’t	know	the	first	value	to	put	in	your	fencepost	algorithm?
What	if	you’re	getting	all	of	your	data	from	user	input?

3.	 When	do	we	know	to	reverse	the	order	of	loop	construction?	The	example	from	the
book	has	us	switching	around	a	lot	of	stuff	for	the	sentinel	loop	with	if	statements.

Put	an	example	up	on	the	board	(or	have	the	student	instructors	do	so),	and	trace	the
flow	of	control	before	and	after	rearranging	the	loop	body.

Video
BJP	5-3,	Sentinel	Loops
http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c5-3

CSE	142,	Fencepost	(0:28-11:20)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=f9874ea5-8d4d-4bf1-
8924-ded454847a58&start=28

CSE	142,	Sentinel	Loops	(15:56)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=f9874ea5-8d4d-4bf1-
8924-ded454847a58&start=681

Forum	discussion
Lesson	3.15	Fencepost	&	Sentinel	Loops	(TEALS	Discourse	account	required)

Lesson	3.15:	Fencepost	&	Sentinel	Loops

246

http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c5-3
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=f9874ea5-8d4d-4bf1-8924-ded454847a58&start=28
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=f9874ea5-8d4d-4bf1-8924-ded454847a58&start=681
http://forums.tealsk12.org/c/unit-3/3-15-fencepost-sentinel-loops

Lesson	3.16	—	Boolean	Logic

Overview

Objectives	—	Students	will	be	able	to…

Write	a	game	that	plays	Rock-Paper-Scissors.

Assessments	—	Students	will…

Submit	a	program	at	the	end	of	2	or	3	class	periods.

Homework	—	Students	will…

Outline	Chapter	5	(up	to	and	including	BJP	5.3)

Materials	&	Prep
Projector	and	computer
Whiteboard	and	markers
Classroom	copies	of	WS	3.16	(RPS,	Pig),	DeMorgan’s	Law,	Poster	3.16.1,	Poster
3.16.2
Link	to	rock-paper-scissor	game	(http://tinyurl.com/bubyvtu)
Poster	3.16.1
Poster	3.16.2

Truth	tables	are	an	important	tool,	especially	for	some	AP	test	questions.	If	you	are	not
familiar	with	truth	tables,	watch	this	5	minute	tutorial	online	(http://tinyurl.com/mw8ohof).	We
recommend	instructors	draw	out	the	&&,	||,	and	!	truth	tables,	and	maybe	do	an	intermediate
example	of	a	two-operator	expression,	before	getting	into	the	De	Morgan’s	law	example	later
in	class.

Pacing	Guide:	Day	1

Lesson	3.16:	Boolean	Logic	(2	Days)

247

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit3/WS%203.16.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit3/DeMorgan%27s%20Law.pptx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit3/Poster%203.16.1.pdf
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit3/Poster%203.16.2.pdf
http://tinyurl.com/bubyvtu
http://tinyurl.com/mw8ohof

Section Total	Time

Attendance	&	student	play 5min

Introduction	to	Boolean	Logic
Add	5–10	minutes	if	using	truth	tables 10min

Student	programming	activity 40min

Pacing	Guide:	Day	2

Section Total	Time

Attendance	&	outline	collection 5min

Whole-group	troubleshooting	and	discussion 10min

Student	programming	activity 40min

Procedure
In	place	of	bell-work,	invite	students	to	warm	up	for	class	by	visiting	the	online	Rock	Paper
Scissor	game	at	the	link	above.	After	a	quick	review	of	Boolean	logic	and	variables,	students
will	be	asked	to	build	their	own	Rock	Paper	Scissor	game.	This	programming	project	should
take	between	2	and	3	55-minute	class	periods	to	complete

Attendance	&	Student	Play	[5	minutes]

Introduction	to	Boolean	Logic	[10	minutes]

1.	 Students	should	have	already	reviewed	this	material	as	part	of	last	nights’	homework
assignment.	Before	moving	on	to	purely	mathematical	examples,	start	with	a	real-life
example	of	how	we	apply	logic.	Be	sure	to	change	P	and	Q	to	statements	that	are
relevant	to	your	students.

P:	It	is	a	holiday.
Q:	My	family	is	having	dinner	together.

!(p	||	q)	⇒	It	is	not	the	case	that	(it	is	a	holiday	OR	my	family	is	having	dinner
together)

!p	&&	!q	⇒	It	is	not	a	holiday	AND	my	family	is	not	having	dinner	together.

Review		&&	,		||	,	and		!	,	including	non-examples:

Lesson	3.16:	Boolean	Logic	(2	Days)

248

┌──────────┬───────────────────────┬────────────────────┐

│	Operator	│							Expression						│	Result													│

┝━━━━━━━━━━┿━━━━━━━━━━━━━━━━━━━━━━━┿━━━━━━━━━━

━━━━━━━━━━┥

│			AND				│		(4	==	4)	&&	(2	>	1)		│	Evaluates	to:	True	│

│			OR					│		(1	<	2)	││	(2	<	1)			│	Evaluates	to:	True	│

│			NOT				│		!(2	<	1)													│	Evaluates	to:	True	│

└──────────┴───────────────────────┴────────────────────┘

if	(q	==	1	||	2	||	4)	{					//	ERROR:	You	must	use	full	Boolean	expressions.

			statement;

			statement;

}

if	(q	==	1	||	q	==	2	||	q	==	4)	{						//	Correct

			statement;

			statement;

}

2.	 As	a	special	note	on	negating	Boolean	expressions,	review	De	Morgan’s	law	(poster
3.16.1).	Have	students	write	De	Morgan’s	law	on	their	Tricky	Code	Cheat	Sheet.

If	you	feel	confident	working	with	truth	tables,	work	through	the	following	illustration
of	De	Morgan’s	laws.	On	the	board	or	projector,	only	write	table	headers	as	you	go
(putting	them	all	up	at	once	may	lead	to	panic/distraction	for	some	students).

						p											q									p	││	q				!(p	││	q)						!p											!q						!p	

&&	!q

┌───────────┬───────────┬───────────┬───────────┬───────────┬───────────┬────

───────┐

│					F					│					F					│											│											│											│											│				

							│

│					F					│					T					│											│											│											│											│				

							│

│					T					│					F					│											│											│											│											│				

							│

│					T					│					T					│											│											│											│											│				

							│

└───────────┴───────────┴───────────┴───────────┴───────────┴───────────┴────

───────┘

Have	students	help	you	fill	out	every	possible	combination	of	Boolean	values	for	p
and	q.

Ask	students	to	evaluate	the	logical	expression	for	each	value	of	p	and	q.

Lesson	3.16:	Boolean	Logic	(2	Days)

249

						p											q									p	││	q				!(p	││	q)						!p											!q						!p	

&&	!q

┌───────────┬───────────┬───────────┬───────────┬───────────┬───────────┬────

───────┐

│					F					│					F					│					F					│											│											│											│				

							│

│					F					│					T					│					T					│											│											│											│				

							│

│					T					│					F					│					T					│											│											│											│				

							│

│					T					│					T					│					T					│											│											│											│				

							│

└───────────┴───────────┴───────────┴───────────┴───────────┴───────────┴────

───────┘

Now	have	students	negate	all	of	the	values	from	the	previous	column.

						p											q									p	││	q				!(p	││	q)						!p											!q						!p	

&&	!q

┌───────────┬───────────┬───────────┬───────────┬───────────┬───────────┬────

───────┐

│											│											│					F					│					T					│											│											│				

							│

│											│											│					T					│					F					│											│											│				

							│

│											│											│					T					│					F					│											│											│				

							│

│											│											│					T					│					F					│											│											│				

							│

└───────────┴───────────┴───────────┴───────────┴───────────┴───────────┴────

───────┘

Ask	students	to	complete	the	values	for	!p	and	!q,	referring	to	the	values	from	the
first	column.

Lesson	3.16:	Boolean	Logic	(2	Days)

250

						p											q									p	││	q				!(p	││	q)						!p											!q						!p	

&&	!q

┌───────────┬───────────┬───────────┬───────────┬───────────┬───────────┬────

───────┐

│					F					│					F					│											│											│				T						│					T					│				

							│

│					F					│					T					│											│											│				T						│					F					│				

							│

│					T					│					F					│											│											│				F						│					T					│				

							│

│					T					│					T					│											│											│				F						│					F					│				

							│

└───────────┴───────────┴───────────┴───────────┴───────────┴───────────┴────

───────┘

Now	have	students	apply	the	&&	operator	to	!p	and	!q.

						p											q									p	││	q				!(p	││	q)						!p											!q						!p	

&&	!q

┌───────────┬───────────┬───────────┬───────────┬───────────┬───────────┬────

───────┐

│											│											│											│											│				T						│					T					│				

T						│

│											│											│											│											│				T						│					F					│				

F						│

│											│											│											│											│				F						│					T					│				

F						│

│											│											│											│											│				F						│					F					│				

F						│

└───────────┴───────────┴───────────┴───────────┴───────────┴───────────┴────

───────┘

Point	out	to	your	students	that	these	two	columns	are	the	same.	Whenever	two
columns	of	a	truth	table	are	the	same,	we	say	that	the	expressions	(column
headings)	are	equivalent,	or	interchangeable.

Lesson	3.16:	Boolean	Logic	(2	Days)

251

						p											q									p	││	q				!(p	││	q)						!p											!q						!p	

&&	!q

┌───────────┬───────────┬───────────┬───────────┬───────────┬───────────┬────

───────┐

│											│											│											│					T					│											│											│				

T						│

│											│											│											│					F					│											│											│				

F						│

│											│											│											│					F					│											│											│				

F						│

│											│											│											│					F					│											│											│				

F						│

└───────────┴───────────┴───────────┴───────────┴───────────┴───────────┴────

───────┘

In	the	illustration	above,	we	showed	that		!(p	&&	q)		is	equivalent	to		!p	&&	!q	.	Invite
students	to	show	the	equivalence	of		!(p	&&	q)		and		!p	||	!q	.

3.	 Review	operator	precedence	on	your	classroom	poster	3.16.2	(or	projected	overhead,	if
you’re	having	a	student	make	the	poster	for	you	during	class).

4.	 Check	for	student	understanding	by	having	students	complete	Practice-It	self-check
questions	assertions1	and	assertions3.

Student	Programming	Activity	[40	minutes]

On	the	projector,	board	or	as	a	handout	(WS	3.16),	give	students	the	following	programming
prompt.	A	link	to	the	NY	Times	article	about	rock	paper	scissors	is	included	in	the	Materials
section	of	this	lesson	plan.

PROGRAMMING	ACTIVITY

Exercise	1

Write	a	game	that	plays	many	rounds	of	Rock	Paper	Scissors.	The	user	and	computer	will
each	choose	between	three	items:	rock	(defeats	scissors,	but	loses	to	paper),	paper
(defeats	rock,	but	loses	to	scissors),	and	scissors	(defeats	paper,	but	loses	to	rock).	If	the
player	and	computer	choose	the	same	item,	the	game	is	a	tie.

A	good	program	will	prompt	for	user	input,	compare	input	to	a	computer	counter-move,
then	output	a	verdict	(user	loses,	wins,	or	ties),	prompt	for	another	round	or	exit.

Lesson	3.16:	Boolean	Logic	(2	Days)

252

An	excellent	program	will	do	all	that	a	satisfactory	program	does,	but	will	use	different
algorithmic	strategies	for	choosing	the	best	item.	Teacher’s	note:	there	is	no	superior
strategy—the	focus	here	is	to	get	students	to	try	different	approaches	and	conclude	that
on	their	own.

Exercise	2

You	and	your	partner	should	test	out	the	game	by	playing	it	at	least	3	times	each.	Keep
record	of	how	many	moves	it	took	before	you	won	or	lost	the	game.

Exercise	3

Write	a	program	that	compares	2	players.	Your	program	should	prompt	for	each	player	(1)
the	number	of	times	they	played	the	game,	(2)	the	number	of	times	they	won	the	game,	(3)
the	number	of	moves	for	each	game.	Have	the	program	report	which	player	performs	better
on	the	basis	of	their	reported	statistics.	Test	your	program	by	inputting	your	and	your
partner’s	results	from	Exercise	2.

Exercise	4

Write	a	program	that	plays	the	dice	game	Pig.	Pig	is	a	2-player	game	where	the	players	take
turns	repeatedly	rolling	a	single	6-sided	die.	A	player	repeatedly	rolls	the	die	until	one	of	the
two	events	occurs:	(1)	either	the	player	chooses	to	stop	rolling,	in	which	case	the	sum	of	that
player’s	rolls	are	added	to	his/her	total	points,	or	(2)	if	the	player	rolls	a	1	at	any	time,	all
points	from	that	turn	are	lots	and	the	turn	ends	immediately.	The	first	player	to	reach	a	score
of	at	least	100	points	wins.

To	get	full	credit	on	this	assignment,	you	must	include	a	structure	diagram	and/or
pseudocode	explaining	your	strategy.

Before	you	begin,	take	a	moment	to	decide	how	your	computer	will	pick	rock,	paper,	or
scissor.	Should	the	computer	pick	randomly?	Should	it	pick	the	same	item	always?	Should	it
repeat	the	same	item	for	a	time,	then	switch	strategies?	Read	through	the	New	York	Times
article	on	Rock	Paper	Scissor,	and	any	other	online	sources	you	choose	to	help	you	draft	a
plan	for	your	program.

Allow	students	to	work	in	pairs,	and	encourage	pairs	to	test	out	each	others’	programs,
look	at	each	others	code	(to	check	for	errors),	etc.	If	students	appear	to	be	working	too
closely,	remind	them	that	each	team	is	responsible	for	writing	their	own	code.

Start	grading	student	note-books	in	small	batches	(so	students	are	not	without	their
notebooks	for	too	long!)

Lesson	3.16:	Boolean	Logic	(2	Days)

253

Accommodation	and	Differentiation
Invite	your	artistic	students	to	create	posters	3.16.1	and	3.16.2	for	your	classroom.	If
needed,	work	through	the	2	Practice-It	questions	as	a	whole	class.

For	your	more	advanced	students,	you	might	encourage	them	to	create	more	complex
algorithms,	or	more	advanced	interaction	with	the	user.	If	they	are	interested	in	AI	and
machine	learning,	invite	them	to	research	the	topic	and	experiment	with	different	techniques
on	their	Rock	Paper	Scissor	program.

Misconceptions
Students	often	have	the	misconception	that	logical	OR	(||)	is	exclusive	OR.	In	a
student’s	daily	life,	they	can	have	either	brownie	or	the	cupcake.	This	implies	they	can
have	one	or	the	other,	not	both.	However,	in	boolean	logic,	“a	or	b”	is	also	true	if	both
are	true.

Students	ask	why	the	symbol		&&		for	AND	an		||		for	OR?	And	why	double		&&		vs
single		&	.

Java	was	derived	from	the	C	programming	language.	The	designers	Kernighan	and
Richie	made	design	decisions	based	on	prior	programming	languages	of	their	time.	The
history	of	C	can	be	found	here:	https://www.bell-labs.com/usr/dmr/www/chist.html.
Java’s	use	of		&		and		|		is	historically	based	on	C.

A	common	syntax	error	by	beginner	and	experienced	programmers	alike	is	typing	a
single	ampersand		&		or	vertical	bar		|	.	Single		&		and		|		are	bitwise	operators,	and
are	not	the	same	as	double		&&		and		||		which	are	logical	AND	and	OR,	respectively.

Logical	operators	AND	and	OR	do	not	follow	English	language	syntax.	For	example,
testing	whether	a	dice	roll	is	either	7	or	11	could	be	translated	incorrectly	to:

if	(roll	==	7	||	11)											//	INCORRECT:	Logical	operator	misconception

if	(roll	==	7	||	roll	==	11)			//	CORRECT

Video
BJP	5-4,	The	Boolean	Type
http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c5-4

Lesson	3.16:	Boolean	Logic	(2	Days)

254

https://www.bell-labs.com/usr/dmr/www/chist.html
http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c5-4

Forum	discussion
Lesson	3.16	Boolean	Logic	(TEALS	Discourse	account	required)

Lesson	3.16:	Boolean	Logic	(2	Days)

255

http://forums.tealsk12.org/c/unit-3/3-1601-1602-boolean-logic

Lesson	3.17	—	Finding	&	Fixing	Errors

Overview

Objectives	—	Students	will	be	able	to…

Find	errors	in	their	returned	homework	assignments.
Correct	their	code

Assessments	—	Students	will…

Re-submit	all	homework	assignments	with	corrected	answers.

Homework	—	Students	will…

Study	for	the	test	by:
Reviewing	all	the	blue	pages	at	the	end	of	Chapters	3,	4,	and	5
Re-reading	sections	as	needed

Submit	5	questions	for	review	in	class	tomorrow	using	electronic	survey

Materials	&	Prep
Any	student	homework	assignments	that	you	have	not	yet	returned
Student	self-help	system	(such	as	C2B4	or	student	pairing)
Electronic	survey	for	student	review	requests

Pacing	Guide

Section Total	Time

Bell-work	and	attendance 5min

Introduction	and	homework	distribution 5min

Student	work 35min

Students	trade	work,	check,	and	submit 10min

Lesson	3.17:	Finding	&	Fixing	Errors

256

Procedure
Today,	students	will	have	the	opportunity	to	correct	any	incorrect	homework	assignments.	If
students	did	not	have	time	to	finish	the	programming	projects	from	yesterday,	you	may	allow
them	time	to	work	on	those	projects	today.

Bell-work	and	Attendance	[5	minutes]

Introduction	and	Homework	Distribution	[5	minutes]

1.	 Return	student	homework	packets,	or	have	students	place	their	returned	homeworks	in
a	pile	on	their	desk.

2.	 Explain	to	students	that	they	have	the	opportunity	to	get	full	credit	on	their	homework
grades	by	correcting	them	now,	in	class.	Ask	students	for	suggestions/ideas	on	how	to
make	sure	they	don’t	miss	any	errors.	(By	now	students	should	be	used	to	relying	on
their	error	checklist/algorithm.)

Student	Work	[35	minutes]

Have	students	work	individually	to	correct	their	homework	grades.

Offer	time	checks	for	students	so	they	stay	on	task.
If	students	have	not	finished	their	programming	project	from	yesterday’s	class,	allow
them	to	do	so	today.

Students	trade	work,	check,	and	turn	in	[10	minutes]

At	the	end	of	class,	have	students	trade	their	homework	assignments	to	evaluate	each
other’s	corrections	before	submission.

Accommodation	and	Differentiation
If	you	have	students	who	are	speeding	through	this	lesson,	you	should	encourage	them	to
tackle	programming	project	1	in	Chapter	5.

If	you	were	unable	to	finish	grading	student	notebooks	yesterday,	finish	them	today	while
students	are	working.	Return	notebooks	by	the	end	of	class	so	students	may	use	them	to
study	for	the	exam.

Lesson	3.17:	Finding	&	Fixing	Errors

257

Forum	discussion
Lesson	3.17	Finding	&	Fixing	Errors	(TEALS	Discourse	account	required)

Lesson	3.17:	Finding	&	Fixing	Errors

258

http://forums.tealsk12.org/c/unit-3/3-17-finding-fixing-errors

Lesson	3.18	—	Review

Overview

Objectives	—	Students	will	be	able	to…

Identify	weaknesses	in	their	Unit	1	knowledge.

Assessments	—	Students	will…

Create	a	personalized	list	of	review	topics	to	guide	tonight’s	study	session.

Homework	—	Students	will…

Study	for	tomorrow’s	test	using	your	targeted	review	list

Materials	&	Prep
Projector	and	computer
Whiteboard	and	marker
Results	from	electronic	survey	of	review	topics
Classroom	copies	of	the	practice	test	WS	3.18

Once	students	have	submitted	their	review	requests,	assemble	those	topics	into	categories
and	prepare	to	re-teach	the	topics	as	needed.

Pacing	Guide

Section Total	Time

Bell-work	and	attendance 5min

Introduction	and	test	format	orientation 15min

Test	review 30min

Check	student	study	lists 5min

Lesson	3.18:	Review

259

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit3/WS%203.18.docx

Procedure

Bell-work	and	Attendance	[5	minutes]

Introduction	and	Test	Format	Orientation	[15	minutes]

1.	 Clearly	indicate	that	you	expect	all	students	to	have	a	list	of	review	topics	to	study	this
evening.	Periodically	remind	students	that	this	list	will	be	checked	at	the	end	of	class.

2.	 Students	should	already	be	familiar	with	the	sections	of	the	test,	but	it	doesn’t	hurt	to
have	students	re-read	the	directions.

3.	 Work	through	the	sample	problems	on	the	test	as	a	way	of	reviewing	topics,	and	answer
any	questions	that	students	bring	up	as	you	go.

Test	Review	[30	minutes]

1.	 Work	through	the	various	review	topics,	prioritizing	questions	that	popped	up	the	most.

a.	Some	questions	you	may	already	have	addressed	while	working	through	the	sample
test.

b.	Be	ready	for	additional	questions	to	pop	up	as	you	go.	Save	yourself	the	work	and
use	old	homework	questions	and	student-generated	test	questions	as	examples	to	work
through.

2.	 Use	a	combination	of	group-solving	questions	on	the	whiteboard,	think-pair-share,	and
timed-response	as	review	strategies.

3.	 After	you’ve	completed	reviewing	an	idea,	remind	the	class	that	they	should	write	down
that	topic	if	they	feel	they	still	have	to	review	it	tonight.	(Yes,	this	will	be	a	reminder
every	few	minutes,	but	it	will	pay	off	later	when	students	start	creating	review	lists
without	prompting	later	in	the	year!)

Check	student	study	lists	[5	minutes]

Spend	the	last	5	minutes	of	class	checking	each	student’s	review	topic	list.

Accommodation	and	Differentiation

Lesson	3.18:	Review

260

The	first	practice	problem	calls	a	method	inside	an	expression	inside	a	parameter	to	answer
another	method	call	(this	sounds	crazy,	but	take	a	look	at	the	question	before	you	write	it
off!)	Logically,	the	question	makes	sense,	but	it	may	throw	some	of	your	students.	Use	the
question	as	an	opportunity	to	model	proper	test-taking	strategies:

Read	code	line-by-line.

If	stumped	on	a	multiple-choice	question,	try	plugging	in	the	answers	to	see	if	they
evaluate	correctly.

Write	notes	and	cross	out	answers	on	your	paper	copy	of	the	test.

If	you	have	been	using	Parsons	Problems,	on	your	students’	tests	you	may	want	to	throw	in
a	“full	challenge”	blank	section	2	question	during	this	unit	or	the	next	to	scaffold	your
students	up	to	the	challenge	of	a	real	AP	test.

As	written,	the	exams	increase	in	length	and	complexity	with	each	unit.	If	your	students	are
all	acing	the	test,	challenge	your	students	by	modifying	the	section	2	questions,	and	adding
extra	section	1	questions.

Forum	discussion
Lesson	3.18	Review	(TEALS	Discourse	account	required)

Lesson	3.18:	Review

261

http://forums.tealsk12.org/c/unit-3/3-18-review

Test	2	Guide
As	written,	the	test	for	this	unit	is	probably	too	long	for	students	to	complete	in	one	class
period.	Extra	questions	have	been	included	so	you	can:

1.	 Pick	and	choose	which	questions	will	appropriately	assess	your	students.
2.	 Create	different	versions	of	the	test	(if	you’ve	noticed	that	cheating	is	a	problem).
3.	 Simulate	an	authentic	AP	test	experience.

When	modifying	the	test	to	suit	your	students,	don’t	forget	to:

1.	 Change	the	headings	on	Section	I	&	II	to	reflect	the	actual	number	of	questions.
2.	 Change	the	headings	on	Section	I	&	II	to	reflect	the	correct	percentages	of	their	total

test	score.	The	AP	exam	weights	Section	I	&	II	at	50%	of	the	overall	score,	each.
3.	 Adjust	the	test	pacing	for	your	class	period’s	time	span.	The	ultimate	goal	is	to	work

your	students	up	to	a	pace	of	2	minutes	per	Section	I	question,	and	26	minutes	per
Section	II	question	(including	time	for	checking).

Forum	discussion
Test	2	Guide	(TEALS	Discourse	account	required)

Test	2	Guide

262

http://forums.tealsk12.org/c/unit-3/3-99-unit-3-test

Lesson	4.00	—	Test	Review	&	Reteach

Overview

Objectives	—	Students	will	be	able	to…

Re-learn	or	strengthen	content	knowledge	and	skills	from	Unit	3.

Assessments	—	Students	will…

Re-submit	test	answers	with	updated	corrections	for	partial	or	full	credit
Credit	depends	on	instructor	preference

Homework	—	Students	will…

Read	BJP	6.1
Correct	any	incorrect	test	answers	by	re-answering	on	a	separate	sheet	of	paper

To	get	back	credit,	they	must	justify	their	new	answers
Staple	new	answer	sheet	to	old	test	and	turn	in	tomorrow

Materials	&	Prep
Projector	and	computer
Whiteboard	and	markers
Corrected	student	tests
Student	grades	(posted	online,	emailed	to	students,	or	handed	back	on	paper	in	class)
Digital	copy	of	test	questions	for	projector

If	your	class	is	acing	the	exams,	and	you	do	not	feel	that	you	need	to	re-teach	any
material,	you	should	skip	this	lesson	and	move	on	directly	to	LP	4.1.	Be	sure	to
update	student	homework	so	students	have	read	§6.1.in	time	for	the	lesson.

Pacing	Guide

Lesson	4.00:	Test	Review	&	Reteach

263

Section Total	Time

Bell-work	and	attendance 5min

Class	discussion	(if	needed) 10min

Test	review	and	reteach 35min

Check	student	notes	and	return	tests 5min

Procedure
Return	student	grades	before	class	begins	or	while	students	are	completing	the	bellwork.

Do	not	return	students’	tests	before	the	review	session,	since	you	want	to	motivate	students
to	pay	attention	to	the	entire	review,	taking	supplemental	notes	the	entire	time.

Bell-work	and	Attendance	[5	minutes]

Class	Discussion	(if	needed)	[10	minutes]

1.	 If	grades	are	low,	invite	the	class	to	a	discussion	of	what	can	be	improved.	Begin	with
student	complaints	and	suggestions	to	build	student	buy-in.	Ask	students:

How	they	felt	they	were	going	to	do	before	the	test
What	surprised	them	once	they	were	taking	the	test
What	they	felt	worked	in	the	first	unit	(lessons,	review	strategies,	assignments)
What	do	they	think	they	want	to	change	for	the	second	unit

2.	 Once	you	feel	that	a	dialogue	has	been	established,	validate	students’	feelings,	then
challenge	them	(e.g.	AP	courses	are	stressful,	but	this	is	good	practice	for	college,
where	the	pace	is	faster	and	professors	don’t	give	personalized	instruction).	In	a	non-
judgmental,	supportive	tone,	remind	students	that	to	be	successful	in	the	course:

Reading	is	mandatory

Homework	is	mandatory	(And	valuable!	You	will	never	assign	“busy”	work.)

To	better	manage	their	time,	students	should	plan	for	1	hour	of	homework	a
weeknight,	with	up	to	2	hours	of	homework	each	weekend.	If	this	seems
impossible,	they	should	meet	with	you	or	their	guidance	counselor	to	assess
whether	they	can	fit	in	an	AP	class	at	this	time.

It	is	VERY	important	to	keep	your	tone	sympathetic	at	this	point—an	overworked,
overstressed,	underperforming	student	will	slow	your	entire	class	down,	and	color
that	student	against	CS	for	the	future!

Lesson	4.00:	Test	Review	&	Reteach

264

Test	Review	and	Reteach	[30	minutes]

1.	 Walk	the	students	through	each	question	on	the	test,	glossing	over	questions	that
everyone	answered	correctly.

a.	You	can	ask	for	students	to	volunteer	answers,	or	call	on	students	randomly.	Make
sure	that	students	explain	their	logic	when	they	answer.	If	a	student	gives	an	incorrect
answer,	the	explanation	will	tell	you	what	you	need	to	re-teach	or	clarify.

b.	Do	not	skip	questions	that	everyone	answered	correctly,	but	do	not	spend	more	than
the	time	it	takes	to	read	the	question,	and	congratulate	students’	correct	answers.

2.	 Project	a	copy	of	each	question	as	you	review—this	will	help	students	recall	the
question/process	the	information.

3.	 Make	sure	that	students	are	taking	notes	during	the	re-teach,	reminding	students	that
for	homework,	they	will	have	an	opportunity	to	win	back	some	of	the	points	on	their
exam.

4.	 For	Section	II	questions,	select	a	sample	of	student	work	(with	any	identifying
information	obscured),	and	work	through	the	answer	together	as	a	class.

Check	student	notes	and	return	tests	[5	minutes]

At	the	end	of	class,	check	student	notes,	and	return	the	tests	in	hard	copy	form	if	applicable.

Accommodation	and	Differentiation
If	students’	grades	are	suffering	because	the	reading	assignments	are	taking	them	too	long,
you	have	a	few	options	(some	more	drastic	than	others):

Set	aside	classroom	time	to	read	through	the	assignment	before	students	leave.

Give	students	the	lines	of	code	needed	to	complete	assignments,	but	in	jumbled	order.
Have	students	rearrange	the	lines	of	code	into	the	proper	program	(this	is	called	a
Parsons	Problem).

Flip	your	classroom:	record	your	lectures,	and	have	students	watch	them	and	take
notes	for	homework.	Any	classwork	drills	or	worksheets	can	be	distributed	for
“homework,”	and	the	more	complicated	assignments	that	would	normally	be	done	at
home,	can	be	completed	with	your	help	when	they	come	to	class.

Lesson	4.00:	Test	Review	&	Reteach

265

If	students	don’t	have	a	computer	to	work	on	Practice-It	problems	at	home,	create
printed-out	sheets	that	students	can	write	code	onto.	Class	time	should	then	be	filled
with	reading	assignments,	and	more	complicated	coding	practice	so	you	are	available	to
tutor	as	needed.

Encourage	advanced	students	to	take	on	additional	programming	challenges.	One	easy
way	to	do	this	is	to	assign	Programming	Projects	from	the	blue	pages	at	the	end	of	each
Chapter.	Unit	4	introduces	the	Magpie	lab,	a	long	form	programming	lab	with	plenty	of
enrichment	opportunities;	encourage	students	to	work	on	this	project	if	they	are	ever	left
with	a	few	minutes	after	completing	a	class	assignment.

Forum	discussion
Lesson	4.00	Test	Review	&	Reteach	(TEALS	Discourse	account	required)

Lesson	4.00:	Test	Review	&	Reteach

266

http://forums.tealsk12.org/c/unit-4/4-test-review-reteach

Lesson	4.01	—	Array	Basics

Overview

Objectives	—	Students	will	be	able	to…

Define,	populate,	and	access	arrays.

Assessments	—	Students	will…

Complete	exercises	with	manipulatives	on	WS	4.1.

Homework	—	Students	will…

Read	BJP	7.1	“For-Each	Loop”	and	“The	Arrays	Class”
Complete	self-check	questions	#1,	7,	9

Materials	&	Prep
Projector	and	computer
Whiteboard	and	markers
Classroom	copies	of	WS	4.1,	Poster	4.2
Array	whiteboards	(see	notes	at	end	of	lesson)	and	dry-erase	markers
Student	small-group	assignments	(~3-4	students	per	group)
Large	manipulative	for	teacher	demo	(optional)

Pacing	Guide

Section Total	Time

Bell-work	and	attendance 5min

Introduction	to	arrays 20min

Student	array	activity 25min

Paper	selection	&	grade	announcement 5min

Lesson	4.01:	Array	Basics

267

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit4/WS%204.1.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit4/Poster%204.2.pptx

Procedure
Divide	your	class	into	small	groups	today,	and	have	the	manipulatives	(see	below)	out	at
each	group	station,	desk,	or	workspace.	Offer	a	just-in-time	intro	to	arrays	as	outlined	below,
but	don’t	belabor	instruction;	students	may	have	better	success	physically	working	through
the	activity.	Circulate	around	the	room	to	check	for	understanding,	but	let	students	help	and
challenge	each	other.

Bell-work	and	Attendance	[5	minutes]

Introduction	to	Arrays	[20	minutes]

1.	 Open	up	with	the	example	of	daily	temperature	on	the	slides.

Ask	the	class	to	build	the	program,	they	should	reach	the	point	where	they
calculate	the	average,	but	are	unable	to	calculate	the	days	above	average	as	they
must	access	the	data	a	second	time.

In	order	the	successfully	make	the	program,	we	would	need	to	store	the
temperature	for	every	day.

An	array	is	an	indexed	structure	that	holds	multiple	values	of	the	same	type.	Ask
students	if	they’ve	seen	anything	in	Java	that	might	be	an	array.	(A	String	can	be
thought	of	as	an	array	of	characters!)

The	values	stored	in	an	array	are	called	elements.	Individual	elements	are
accessed	using	an	integer	index	(the	position).	Ask	students	what	element	is	stored
at	index	2,	4,	and	7	in	this	string/array.

Since	an	array	is	an	object,	you	have	to	construct	it	(you	can’t	just	declare	it	as	a
variable).

int[]	numbers	=	new	int[10];

Nothing	is	in	the	highlighted	brackets	because	you’re	describing	what	type	is	going
to	be	contained	in	the	array.

int[]	numbers	=	new	int[10];

Here’s	the	name	of	your	array—in	this	case	we’re	making	an	array	of	numbers.

int[]	numbers	=	new	int[10];

Lesson	4.01:	Array	Basics

268

We	use	the	new	keyword	since	we’re	constructing	an	object,	then	we	tell	Java	how
many	elements	we	want	to	store	in	our	array.	In	this	case	we	want	to	store	10
numbers	in	the	array.

Check	for	student	understanding	by	asking	students	to	tell	you	how	to
construct	an	array	that	holds	9	integers.

int[]	numbers	=	new	int[9];

Alternatively,	you	can	initialize	an	array	by	writing	out	the	full	array.

int[]	numbers	=	{0,	1,	2,	3,	4,	5};

2.	 Both	of	these	sample	arrays	are	only	½	done	right	now—they’re	arrays	filled	with	0s
because	Java	auto-initializes	arrays	to	a	default	value	of	0	(for		char	,		double	,	and
	int)	or		false		(for	boolean).	So	our	number	array	looks	something	like	this:

.------------------.---.---.---.---.

|	array	`numbers`:	|	0	|	0	|	0	|	0	|

+------------------+---+---+---+---+

|					index								|	0	|	1	|	2	|	3	|

`------------------'---'---'---'---'

To	fill	in	this	array,	we	need	to	fill	in	the	values	for	each	location:

numbers[0]	=	27;

numbers[3]	=	-6;

Now	the	array	looks	like	this:

.------------------.---.---.---.---.

|	array	`numbers`:	|	27|	0	|	0	|-6	|

+------------------+---+---+---+---+

|					index								|	0	|	1	|	2	|	3	|

`------------------'---'---'---'---'

3.	 Briefly	touch	on	other	types	of	arrays	and	common	errors.

You	can	have	arrays	of	almost	anything:		String	,		double	,		boolean	,	etc.
Examples	of	an	instantiated	double	and	boolean	array	are	on	the	slides.	Ask	the
class	what	they	must	change	to	create	these	arrays.

Lesson	4.01:	Array	Basics

269

Cover	the	common	index-out-of-bounds	exception.	If	the	program	calls	illegal
indexes	or	indexes	outside	0	and	the	array’s	length–1,	Java	will	throw	you	an
exception.	(It’s	always	nice	to	go	over	reasons	for	exceptions	so	you	don’t	need	to
correct	them	all	later!)

4.	 If	you	have	a	really	big	array,	you	can	use	a	Scanner	to	grab	values	from	user	input,	or
you	can	autofill	them	with	a	loop:

for	(int	i	=	0;	i	<	age.length;	i++){

				age[i]	=	input.nextInt();

}

As	you	move	across	the	array	(in	this	case	to	fill	each	element	with	a	user-inputted
value),	we	call	this	“array	traversal.”	You’ll	need	to	do	this	a	lot	in	the	future,	so	you
should	put	a	general	formula	in	your	Tricky	Code	Cheat	Sheet:

for	(int	i	=	0;	i	<	age.length;	i++){

				//	do	something	with	age[i];

}

Student	Array	Activity	[25	minutes]

1.	 Distribute	white	boards	and	markers	to	group	workstations	before	students	get	seated.

2.	 If	you	feel	that	your	students	need	the	additional	structure,	assign	groups	to	work
together	on	Problem	2.

3.	 Walk	around	the	room,	spot-checking	for	student	understanding	and	answering	any
student	questions.

Paper	Selection	&	Grade	Announcement	[5	minutes]

At	the	end	of	class,	consider	choosing	one	group’s	whiteboard	to	evaluate	as	a
demonstration	for	the	class.

Accommodation	and	Differentiation
Rather	than	assigning	groups	randomly	or	by	ability,	use	tiered	grouping	as	a	differentiation
strategy.	Concepts/skills	will	be	covered	at	different	levels	of	complexity	in	response	to
diagnosed	needs	of	each	learner.	Your	tiered	group	assignments	will	probably	end	up
changing	from	one	exercise	to	another,	since	students’	needs	and	strengths	vary	with
instructional	objectives	and	task	types.

Lesson	4.01:	Array	Basics

270

You	can	reduce	paper	waste	and	increase	student	engagement	by	creating	an	inexpensive
classroom	set	of	“array	whiteboards”	following	these	instructions:

1.	 Purchase	panel	board	from	your	local	hardware	store	(http://tinyurl.com/zgtlbhr)

2.	 Have	the	assistant	cut	the	board	into	long	strips	that	you	can	use	as	1	dimensional
arrays.

i.	 If	you	like	to	use	individual	whiteboards	to	check	for	student	understanding,	you
can	have	whiteboards	cut	to	individual	student	squares,	then	have	students	line	up
the	little	white	boards	into	a	one-dimensional	array	for	this	exercise.

ii.	 If	you	plan	on	using	these	as	array	boards,	you	can	either	subdivide	the	boards	into
element-blocks	with	black	electrical	tape,	or	you	can	have	your	students	draw	the
blocks	in	with	their	dry	erase	markers.	(The	latter	option	encourages	students	to
construct	arrays	of	different	sizes.)

iii.	 Your	total	number	of	array	white	boards	should	be:

(#	small	groups	in	your	classroom)	*	2	+	1	instructor	array	board

3.	 Use	these	array-whiteboards	to	demonstrate	the	relationship	between	1	(and	later	2)
dimensional	arrays	during	this	unit.

In	mathematics,	a	manipulative	is	an	object	which	is	designed	so	that	a	learner	can
perceive	some	mathematical	concept	by	manipulating	it,	hence	its	name.	The	use	of
manipulatives	provides	a	way	for	children	to	learn	concepts	in	a	developmentally
appropriate,	hands-on	and	experiential	way.

[TEST:	hello	world]

Teacher	Prior	CS	Knowledge
Arrays	in	Java	(and	other	object	oriented	programming	languages)	are	classes.	This	brings
the	whole	object	oriented	paradigm	into	play.	When	declaring	an	array	variable,	the	variable
is	now	a	reference	to	an	array	object.	In	order	to	create	an	object	from	a	class	the
programmer	uses	the		new		keyword.	There	is	a	distinction	between	the	array	reference	and
the	array	object.	This	programming	construct	allows	for	multiple	reference	to	point	to	the
same	object.

Common	Mistakes

Lesson	4.01:	Array	Basics

271

http://tinyurl.com/zgtlbhr

Arrays	common	mistakes:
http://interactivepython.org/runestone/static/JavaReview/ArrayBasics/aMistakes.html

Misconceptions
Students	understanding	of	the	difference	between	the	index		i		and	the	content	of	the
i 	element	stored	in		a[i]	.

Loop	bounds:

0-based	index	arrays,
where	arrays	end,	versus	array	length,	and
what	are	the	range	of	indices	to	express	a	particular	array	range.

Video
BJP	7–1,	Array	Simulation
http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c7-1

CSE	142,	Arrays	(1:35–26:06)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=14058dec-efd5-4db3-
b841-9d836e92bfb4&start=95

CS	Homework	Bytes,	Arrays,	with	Ariel
https://www.youtube.com/watch?v=PFohS2HvCgs

Forum	discussion
Lesson	4.01	Array	Basics	(TEALS	Discourse	account	required)

th

Lesson	4.01:	Array	Basics

272

http://interactivepython.org/runestone/static/JavaReview/ArrayBasics/aMistakes.html
http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c7-1
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=14058dec-efd5-4db3-b841-9d836e92bfb4&start=95
https://www.youtube.com/watch?v=PFohS2HvCgs
http://forums.tealsk12.org/c/unit-4/4-01-array-basics

Lesson	4.02	—	For-Each	Loop	&	Arrays
Class

Overview

Objectives	—	Students	will	be	able	to…

Populate	and	access	arrays	using	a	for-each	loop

Assessments	—	Students	will…

Complete	manipulatives	exercises	on	WS	4.2

Homework	—	Students	will…

Read	BJP	7.2	up	to	“Reversing	an	Array”
Complete	self-check	questions	#12-14

Materials	&	Prep
Projector	and	computer
Whiteboard	and	markers
Classroom	copies	of	WS	4.2
Poster	4.2
Array	whiteboards	(see	notes	at	end	of	LP	4.2)	and	dry	erase	markers
Student	small-group	assignments	(≈3-4	students	per	group)
Large	manipulative	for	teacher	demo	(optional)

Pacing	Guide

Lesson	4.02:	For-Each	Loop	&	Arrays	Class

273

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit4/WS%204.2.docx

Section Total	Time

Bell-work	and	attendance 5min

Introduction	to	Arrays 10min

Student	Array	Activity 35min

Paper	selection	&	grade	announcement 5min

Procedure
As	with	yesterday’s	class,	divide	your	class	into	small	groups,	and	have	the	manipulatives
out	at	each	group	station,	desk,	or	workspace.	Offer	a	just-in-time	intro	to	for-each	loops,	but
do	not	get	bogged	down	in	the	introductory	lesson.	Many	students	will	learn	from	physically
practicing	the	for-each	control	structure	using	the	array	whiteboards.	Circulate	around	the
room	to	check	for	understanding,	but	let	students	help	and	challenge	each	other.

Bell-work	and	Attendance	[5	minutes]

Introduction	to	Arrays	[10	minutes]

1.	 Briefly	introduce	the	for-each	loop,	array	initialization,	and	the	Arrays	class	before
dismissing	the	class	to	work	on	their	group	activity:

If	you	want	to	access	each	element	in	the	array	without	changing	the	values	(to
summarize	or	count	them),	you	can	access	them	using	a	for-each	loop:

for	(<type>	<name>	:	<array>){

				<statement>;

				<statement>;

				…

}

2.	 Place	an	array	on	the	board,	demonstrating	the	quick	way	to	declare	an	array,	and	then
illustrate	how	a	for-each	loop	could	be	used	to	access	the	array:

int[]	fallTemperatures	=	{55,	50,	59,	69,	48,	30,	48};

This	initializes	an	array	called	fallTemperatures	with	7	integer	values.	Ask	students
when	they	might	see	these	temperatures	in	their	region,	and	how	the	values	in	the
array	would	differ	during	another	season	or	in	a	different	location.	It	may	make

Lesson	4.02:	For-Each	Loop	&	Arrays	Class

274

sense	in	your	region	to	change	the	array	name	to	winterTemperatures	or
nightTimeTemperatures,	etc.

for	(int	i	=	0;	i	<	fallTemperatures.length;	i++)	{

				if	(fallTemperatures[i]	>	32)	{

								above++;

				}

}

This	is	our	traditional	loop,	which	traverses	the	array	and	sums	up	all	the
temperatures	that	are	above	freezing	(we	assume	there	is	a	method	called	“above”
that	keeps	a	running	count	of	how	many	days	were	above	32	degrees).	We	can
express	this	same	process	with	a	for-each	loop:

for	(int	i	:	fallTemperatures)	{

				if	(i	>	32)	{

								above++;

				}

}

with	the	general	form	of:

for	(<type>	<name>	:	<array>)	{

				<statement>;

				<statement>;

				…

}

Make	a	point	of	having	your	students	write	a	note	to	remind	themselves	that	for-
each	loops	cannot	modify	values	within	an	array,	only	examine	each	value	in
sequence.

Student	Array	Activity	[35	minutes]

1.	 Distribute	white	boards	and	markers	or	paper	printouts	to	group	workstations	before
students	get	seated.

2.	 If	you	feel	that	your	students	need	the	additional	structure,	assign	groups	to	work
together.

3.	 If	you	think	students	will	need	the	extra	guidance,	help	students	together	in	a	whole-
group	setting.	To	help	students	without	giving	them	the	answer	outright,	point	out	that:

a.		numbers[7]		evaluates	to		0	.

Lesson	4.02:	For-Each	Loop	&	Arrays	Class

275

b.		numbers[numbers[7]]		→		numbers[0]		does	NOT	evaluate	to	0.

c.	Instead,	the	memory	location		numbers[0]		(the	index	0	of	the	numbers	array)	receives
a	value.

4.	 Walk	around	the	room,	spot-checking	for	student	understanding	and	answering	any
student	questions.

Paper	Selection	&	Grade	Announcement	[5	minutes]

At	the	end	of	class,	consider	choosing	one	group’s	whiteboard	to	evaluate	as	a
demonstration	for	the	class.

Accommodation	and	Differentiation
If	you	have	a	student	that	would	benefit	from	additional	tactile	or	visiospatial	learning
exercises,	invite	him	or	her	to	create	a	classroom	poster	that	contains	the	same	information
as	Poster	4.2.

Rather	than	assigning	groups	randomly	or	by	ability,	use	tiered	grouping	as	a	differentiation
strategy.	Concepts/skills	will	be	covered	at	different	levels	of	complexity	in	response	to
diagnosed	needs	of	each	learner.	Your	tiered	group	assignments	will	probably	end	up
changing	from	one	exercise	to	another,	since	students’	needs	and	strengths	vary	with
instructional	objectives	and	task	types.

Video
CSE	142,	Array	Traversal	(26:06–33:26)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=14058dec-efd5-4db3-
b841-9d836e92bfb4&start=1570

CSE	142,	For-Each	Loop	(19:40–22:40)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=14058dec-efd5-4db3-
b841-9d836e92bfb4&start=1570

Forum	discussion
Lesson	4.02	For-Each	Loop	&	Arrays	Class	(TEALS	Discourse	account	required)

Lesson	4.02:	For-Each	Loop	&	Arrays	Class

276

https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=14058dec-efd5-4db3-b841-9d836e92bfb4&start=1570
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=14058dec-efd5-4db3-b841-9d836e92bfb4&start=1570
http://forums.tealsk12.org/c/unit-4/4-02-for-each-loop-arrays-class

Lesson	4.02:	For-Each	Loop	&	Arrays	Class

277

Lesson	4.03	—	Printing,	Searching,	&
Testing	for	Equality

Overview

Objectives	—	Students	will	be	able	to…

Manipulate	single-dimension	arrays	using	a	variety	of	array	transversal	algorithms.

Assessments	—	Students	will…

Teach	a	mini-lesson	on	printing,	searching/replacing,	testing	for	equality,	reversing	an
array,	or	string	traversal.
Complete	a	quiz	at	the	end	of	Day	2

Homework	—	Students	will…

Day	1:	Complete	self-check	questions	#15-17	and	exercise	3
Day	2:	Read	BJP	7.3	and	complete	self-check	questions	#19-21

Materials	&	Prep
Group	copies	of	WS	4.3
Assignments	for	5	student	groups
5	classroom	copies	of	the	textbook	(or	have	students	bring	their	copies	to	class)
Copies	of	the	grading	rubric	(on	the	overhead	or	printed	out;	optional)

You	will	need	to	circle	student	assignments	on	point	2	of	WS	4.3,	so	each	group	knows	what
topic	they	are	expected	to	teach.

Pacing	Guide:	Day	1

Lesson	4.03:	Printing,	Searching,	&	Testing	for	Equality	(2	Days)

278

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit4/WS%204.3.docx

Section Total	Time

Bell-work	and	attendance 5min

Introduction	to	assignment 10min

Student	preparation	of	lesson	&	quiz	questions 40min

Pacing	Guide:	Day	2

Section Total	Time

Group	set-up,	attendance 5min

Group	presentations	(~8	minutes	per	group) 40min

Quiz 10min

Procedure
Your	hook	for	today’s	lesson	is	to	turn	the	reigns	over	to	students	immediately.	Have
instructions	printed	out	and	sitting	at	teamwork	stations	(or	on	student	desks).	Encourage
students	to	answer	their	own	questions	using	the	instruction	sheet	and	textbook.	Frequently
asked	questions	and	suggestions	for	student	groups	are	included	in	Accommodations	and
Differentiation.

Bell-work	and	Attendance	[5	minutes]

Introduction	to	Assignment	[10	minutes]

1.	 Review	the	assignment	as	outlined	on	WS	4.3,	and	ask	students	to	explain	back	to	you
what	their	group	presentations	need	to	include	for	full	credit.	If	you	need	to,	review
procedures	for	group	work,	then	split	the	class	into	groups.

If	you	feel	it	will	benefit	your	class,	reviewing	or	distributing	the	grading	rubric	before	the
assignment	should	be	done	at	this	point.

Student	Preparation	of	Lesson	and	Quiz	Questions	[40
minutes]

Give	students	the	class	period	to	prepare	their	presentation	and	generate	quiz	questions	for
tomorrow’s	class.

Lesson	4.03:	Printing,	Searching,	&	Testing	for	Equality	(2	Days)

279

Use	a	timer	and	periodically	announce	how	much	time	is	left	in	class	so	students	can
pace	themselves.

Emphasize	to	students	that	they	should	primarily	draw	upon	their	textbooks	to	help
them	plan	their	lesson.

Answers	to	commonly	asked	questions,	and	tips	for	the	different	groups	may	be	found
below:

FAQ:	PRINTING	AN	ARRAY

Guidance	for	student	teachers

1.	 If	students	are	lacking	direction,	encourage	students	to	refer	to	the	textbook	and	trace
the	loop	and	predict	the	output	of	the	code	that	prints	the	array	“list”	vertically.

2.	 A	good	“Tricky	Code	Cheat	Sheet”	tip	can	be	found	on	the	same	page;	any	time	you
see	a	list	of	values	separated	by	commas,	students	should	remember	to	use	a
fencepost	algorithm.

Common	Questions/Answers

1.	 When	would	we	encounter	an	empty	array?

If	you	set	array	values	to	null,	they’re	actually	empty	(not	just	equal	to	0	or	false).
Another	way	you	could	get	an	empty	array	is	if	you	initialized	an	array	of	size	0;	then
there	would	be	no	elements	at	all!

2.	 Why	do	we	have	to	include	extra	code	to	account	for	an	empty	array?

We	put	in	“contingency	code”	to	deal	with	an	empty	array	to	be	thorough.	If	we	don’t
handle	special	cases	correctly,	Java	will	throw	an	exception,	so	we	try	to	cover	our
bases	and	prevent	that	from	happening.

FAQ:	SEARCHING	AND	REPLACING

Guidance	for	student	teachers

1.	 If	students	are	having	trouble	outlining	their	lesson,	encourage	them	to	teach	counting,
then	locating	values	in	a	list.	Once	they’ve	covered	those	methods,	they	can	finish	up	by
tracing	the	sample	method	replaceAll	and	explaining	the	output.

2.	 A	good	“Tricky	Code	Cheat	Sheet”	tip	would	be	the	convention	of	returning	-1	if	a	value
is	not	found	in	the	list.

Lesson	4.03:	Printing,	Searching,	&	Testing	for	Equality	(2	Days)

280

Common	Questions/Answers

1.	 Why	do	we	use	a	for-each	loop	for	counting	occurrences,	but	not	for	finding
values	in	a	list?

Neither	one	requires	you	to	change	the	contents	of	the	array!	**If	we’re	finding	an	item
in	a	list	and	returning	its	index,	then	we	need	to	track	indexes	as	we	search.	That’s
done	naturally	with	a	regular	for	loop;	with	a	for-each	loop,	we’d	have	to	manually
simulate	a	for	loop	to	compute	the	index.

2.	 Why	is	the	method	“count”	initialized	to	zero?

This	is	setting	up	the	loop	to	work	correctly—review	“priming	the	pump”	analogy	if
needed.

FAQ:	TESTING	FOR	EQUALITY

Guidance	for	student	teachers

1.	 Remind	students	to	include	the	definition	for	what	makes	arrays	equivalent	(they	have
the	same	length	and	store	the	same	sequence	of	values).

2.	 If	students	are	struggling	with	the	sequence	of	their	lesson,	you	might	suggest	that	they
being	by	teaching	the	sample	method	“equals,”	then	circling	back	to	explain	why	testing
for	inequality	is	easier	than	testing	for	equality.

3.	 A	good	general	tip	for	the	Tricky	Code	Cheat	Sheet	would	be	the	common	pattern	for
methods	like	“equals;”	Test	all	for	the	ways	that	the	two	objects	might	not	be	equal,
returning	false	if	there	are	any	differences,	or	true	at	the	very	end	if	all	tests	are	passed.

Common	Questions/Answers

1.	 Can’t	we	just	use	Arrays.equals	to	see	if	two	arrays	are	equal?

Yes,	you	can	(and	should)	use	this	method	from	the	Arrays	class.	In	teaching	your	unit,
your	purpose	is	to	familiarize	students	with	the	way	to	write	code	that	tests	equals	in
general.	While	you	might	not	need	it	in	this	particular	situation,	you	may	want	to	tweak
the	method	down	the	road,	and	you	cannot	edit	the	Arrays.equals	method	because	its
not	in	a	class	you	can	edit.

FAQ:	REVERSING	AN	ARRAY

Guidance	for	student	teachers

Lesson	4.03:	Printing,	Searching,	&	Testing	for	Equality	(2	Days)

281

1.	 If	students	need	guidance	on	structuring	their	lesson,	encourage	them	to	work	through
the	final	(correct)	method	“swap,”	trace	the	flow	of	control	and	output,	then	cover	why
other	versions	don’t	work.	(They	may	not	present	in	this	order,	but	covering	the	correct
answer	should	help	them	organize	their	thoughts.)

2.	 A	good	tip	for	the	Tricky	Code	Cheat	Sheet	is	to	summarize	the	steps	needed	to	swap
two	values.	This	comes	up	often	on	the	AP	exam.

Common	Questions/Answers

1.	 Why	can’t	we	just	swap	values	by	assigning	them	to	each	other?

If	you	assign	one	value	to	the	other,	you	copy	over	the	values,	so	½	way	through	the
process,	you’ve	got	2	copies	of	the	same	value.	The	second	half	of	the	swap	doesn’t
work!

2.	 Why	do	we	have	to	stop	the	swap	loop	½	way	through	the	list.length?	Won’t	that
just	swap	½	of	the	list?

Using	a	line	of	4	–	6	objects	(pens,	paperclips,	whatever	you	have	around	the
classroom),	start	by	swapping	the	first	&	last	items,	then	the	next-inner-two,	and	so	on.
Count	each	move	as	you	make	it,	then	pause	at	the	halfway	point,	pointing	out	you’ve
conducted	length/2	swaps.	Proceed	with	the	final	swaps,	returning	objects	back	to	their
original	place.

FAQ:	STRING	TRAVERSAL	ALGORITHMS

Guidance	for	student	teachers

1.	 Encourage	the	group	to	spend	some	time	during	their	lesson	on	why	you	use
parentheses	for	most	arrays,	but	not	with	strings.

2.	 If	students	are	at	a	loss	for	how	to	teach	their	segment,	suggest	covering	an	example
and	a	non-example	for	contrast.	A	good	non-example	would	be	traversing	an	array	that
isn’t	a	string.

Common	Questions/Answers

None.

1.	 Collect	quiz	questions	before	the	end	of	class.	Check	and	compile	into	a	quiz	for	the
end	of	Day	2.

2.	 On	Day	2,	give	each	group	5	minutes	to	present	their	topic	and	3	minutes	for	questions.

Lesson	4.03:	Printing,	Searching,	&	Testing	for	Equality	(2	Days)

282

Encourage	students	to	ask	questions,	and	be	sure	to	ask	a	question	or	two	of	each
team	(depending	on	how	many	teams	you	have).

3.	 Use	the	grading	rubric	as	outlined	here:

3	pts. 2	pts. 1	pts. 0	pts.

Presentation
includes
definitions	and
an	example	with
proper	syntax.

Presentation
includes
definitions	or	an
example	with
proper	syntax.

Presentation
includes	definitions
or	an	example	with
proper	syntax	with
few	mistakes.

Presentation	includes
definitions	or	an
example	with	proper
syntax	with	many
mistakes.

Presentation
includes	a	non-
example	as
helpful	contrast.

Presentation
includes	a	non-
example	that	is
marginally
helpful.

Presentation
includes	a	non-
example	that	does
not	add	to
comprehension.

Presentation	includes	a
non-example	that	adds
confusion,	or
presentation	does	not
include	a	non-example.

Presentation
includes	a
helpful	tip	that	is
clearly
explained	and
concisely	stated.

Presentation
includes	a
helpful	tip	that	is
clearly
explained	or
concisely
stated.

Presentation
includes	a	helpful
tip	that	is	not	clearly
explained	and	may
include	a	small
error.

Presentation	does	not
include	a	helpful	tip	or
hint.

1.	 Administer	the	student-generated	quiz	to	assess	student	understanding.

Accommodation	and	Differentiation
Circle	around	the	room	to	help	students	through	reading	the	text	in	the	textbook.	Make	sure
that	each	of	your	working	teams	are	properly	stratified	(rather	than	using	tiered	grouping).

If	students	are	speeding	along,	encourage	students	to	write	down	questions	to	pose	to	other
groups	during	mini-lessons.	If	everyone	finishes	creating	their	lessons	early,	start	the
classroom	presentations	on	Day	1	instead	of	waiting	for	Day	2.	If	only	1	or	2	groups	have
finished	early,	encourage	groups	to	rehearse	lesson	delivery.

Video
BJP	7-2,	Array	Traversal	Algorithms
http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c7-2

Lesson	4.03:	Printing,	Searching,	&	Testing	for	Equality	(2	Days)

283

http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c7-2

CSE	142,	Random	Access	to	Array	(33:26-42:00)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=14058dec-efd5-4db3-
b841-9d836e92bfb4&start=2006

Forum	discussion
Lesson	4.03	Printing,	Searching,	&	Testing	for	Equality	(TEALS	Discourse	account	required)

Lesson	4.03:	Printing,	Searching,	&	Testing	for	Equality	(2	Days)

284

https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=14058dec-efd5-4db3-b841-9d836e92bfb4&start=2006
http://forums.tealsk12.org/c/unit-4/4-03-printing-searching-testing-for-equality

Lesson	4.04	—	Reference	Semantics

Overview

Objectives	—	Students	will	be	able	to…

Compare	and	contrast	how	primitives	and	arrays	are	treated	when	passed	as
parameters.

Assessments	—	Students	will…

Complete	graphic	organizers	and	a	worksheet
Extra	credit:	complete	a	Pokémon	Challenge

Homework	—	Students	will…

Read	BJP	7.4	up	to	“Command-Line	Arguments”
Complete	exercises	#9,	10

Materials	&	Prep
Projector	and	computer	with	this	page:
http://www.legendarypokemon.net/javacalc.html
Whiteboard	and	markers
Classroom	copies	of	WS	4.4
Instructor	copy	of	WS	4.4	Answer

The	“worksheet”	for	today	is	a	5-page	work	packet,	so	if	your	school	has	long
lines/production	time	for	the	copy	machine,	plan	ahead!

Pacing	Guide

Lesson	4.04:	Reference	Semantics

285

http://www.legendarypokemon.net/javacalc.html
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit4/WS%204.4.docx

Section Total	Time

Bell-work	and	attendance 5min

Student	activity 25–30min

Student	trade	&	check 5min

Whole	group	review	&	paper	submission 15min

Procedure
Hook	your	class	today	with	the	concept	of	a	“backwards”	class	structure.	Using	only	the
information	gleaned	from	last	night’s	reading	(and	perhaps	some	help	from	a	friend),
students	should	work	through	as	much	of	the	worksheet	as	they	can	in	the	time	allotted	(~30
minutes).	Finish	the	class	with	whole-class	note	taking	on	the	topics	that	were	challenging	in
the	sheet.

Bell-work	and	Attendance	[5	minutes]

Student	Activity	[25-30	minutes]

Have	students	start	working	on	WS	4.4	in	pairs	or	alone.	Use	a	timer	to	help	students	pace
themselves.

Students	Trade	&	Check	[5	minutes]

After	25–30	minutes	give	students	a	few	minutes	to	check	each	others’	work.

Whole	Group	Review	&	Paper	Submission

1.	 As	a	whole	group,	ask	students	for	questions	they	had	on	the	worksheet.	Use	the
answer	key	included	on	this	to	guide	instruction.

2.	 Collect	worksheets	at	the	end	of	class.

Accommodation	and	Differentiation
If	you	have	been	using	Parson	Problems	throughout	the	year,	your	students	will	be	familiar
with	the	format	of	Question	8	on	the	worksheet.	For	other	classes,	this	may	be	the	first	time
they’ve	been	asked	to	rearrange	provided	code.	Read	through	the	problem	out	loud	with	the

Lesson	4.04:	Reference	Semantics

286

class,	then	read	through	the	lines	of	code	in	the	bottom	half	of	the	question.	Each	line	of
code	(even	the	lone	bracket)	can	be	shuffled	and	re-arranged	to	provide	the	correct	code
sequence.

Student	success	in	this	lesson	relies	heavily	on	students’	having	been	able	to	read	and
comprehend	the	prior	nights’	reading.	In	ELL	classrooms,	encourage	students	to	open	their
books	and	work	with	the	text	in	front	of	them,	and	pair	students	of	differing	language
abilities.

If	you	know	your	students’	reading	abilities	will	not	allow	for	a	lesson	like	this,	conduct
the	lesson	as	a	whole-group,	teaching	a	segment	of	the	chapter	and	pausing	to	let
students	work	on	a	question	before	moving	forward.

The	worksheet	matches	up	sequentially	with	section	7.3,	so	you	can	have	students	read
along	with	your	in	the	book	as	you	work	through	the	sheet,	and/or	you	can	allow
advanced	students	to	work	on	their	own	as	you	help	the	rest	of	class.

There	will	probably	be	a	lot	of	variation	in	how	long	it	takes	students	to	complete	today’s
assignment.

Ask	students	who	finish	early	to	design	a	hands-on	demonstration	that	uses	the	array
whiteboards	(and	any	other	materials	around	the	room)	to	explain	the	proper	answers	to
the	questions	on	the	worksheet.	If	they	come	up	with	any	cool	demos,	use	them	during
student	review	at	the	end	of	the	class.

Be	ready	with	a	Pokemon	Challenge	for	the	students	that	speed	through	the
assignment:

POKEMON	CHALLENGE

This	java	based	calculator	(http://www.legendarypokemon.net/javacalc.html)	uses	median
IVs	(initial	values)	and	input	EVs	(effort	values)	to	calculate	a	Pokemon’s	stats	on	a	given
level.

Write	a	method	called	medianIV	that	accepts	an	array	of	integer	IVs	as	its	parameter	and
returns	the	median	of	the	numbers	in	the	array.

The	median	number	is	the	number	that	appears	in	the	middle	of	the	list	if	you	arrange	the
elements	in	order.	You	can	assume	that	the	array	is	of	odd	size	(so	that	one	element	is
found	in	the	middle),	and	that	the	numbers	in	the	array	are	between	0	and	99,	inclusive.	For
example,	the	median	of		[5,	9,	4,	10,	11]		is	9,	and	the	median	of		[0,	8,	1,	89,	48,	27,
30]		is	27.

Hint:	Check	out	the	Tally	program	in	chapter	7	for	some	ideas	on	what	code	to	use.

Lesson	4.04:	Reference	Semantics

287

http://www.legendarypokemon.net/javacalc.html

Video
CSE	142,	Array	Initializer	(3:26–5:43)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=acae034a-2b95-4eb3-
b3f0-17a77a7b5ff3&start=206

CSE	142,	Passing	array	as	parameter	(5:44–9:05)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=acae034a-2b95-4eb3-
b3f0-17a77a7b5ff3&start=344

CSE	142,	Arrays.toString()	(21:19–25:27)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=acae034a-2b95-4eb3-
b3f0-17a77a7b5ff3&start=1278

CSE	142,	Values	vs	reference	(25:28–39:18)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=acae034a-2b95-4eb3-
b3f0-17a77a7b5ff3&start=1528

CSE	142,	modifying	array	when	passed	as	parameter	(39:19–43:41)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=acae034a-2b95-4eb3-
b3f0-17a77a7b5ff3&start=2359

Forum	discussion
Lesson	4.04	Reference	Semantics	(TEALS	Discourse	account	required)

Lesson	4.04:	Reference	Semantics

288

https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=acae034a-2b95-4eb3-b3f0-17a77a7b5ff3&start=206
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=acae034a-2b95-4eb3-b3f0-17a77a7b5ff3&start=344
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=acae034a-2b95-4eb3-b3f0-17a77a7b5ff3&start=1278
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=acae034a-2b95-4eb3-b3f0-17a77a7b5ff3&start=1528
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=acae034a-2b95-4eb3-b3f0-17a77a7b5ff3&start=2359
http://forums.tealsk12.org/c/unit-4/4-04-reference-semantics

Lesson	4.05	—	Shifting	Values	&	Arrays	of
Objects

Overview

Objectives	—	Students	will	be	able	to…

Shift	elements	within	an	array
Construct	arrays	of	objects

Assessments	—	Students	will…

Complete	Practice-It	questions
Model	memory	manipulation	using	array	whiteboards

Homework	—	Students	will…

Read	BJP	7.4	“Nested	Arrays”	and	BJP	7.5	“Rectangular	Two-Dimensional	Arrays”
Complete	self-check	questions	#27-29	and	exercise	#4

Materials	&	Prep
Projector	and	computer	with	this	page:
http://www.legendarypokemon.net/javacalc.html
Classroom	whiteboard	&	markers
Array	whiteboard	&	markers
Small	group	assignments	&	seating	arrangements	(if	possible)

If	your	classroom	structure	allows	it,	arrange	array	whiteboards	and	markers	at	stations
where	students	can	gather	around	them	to	model	the	concepts	you	teach	during	your	intro.
Ideally,	students	will	be	standing	huddled	around	the	arrays,	actively	moving	and	rearranging
items.

Pacing	Guide

Lesson	4.05:	Shifting	Values	&	Arrays	of	Objects

289

http://www.legendarypokemon.net/javacalc.html

Section Total	Time

Bell-work	and	attendance 5min

Introduction	&	small-group	practice 20–25min

Practice-It	Questions 25–30min

Error-checking	algorithm	(see	below) 10min

Procedure
Hook	your	class	today	by	having	them	in	small	groups	with	the	array	whiteboards	during
your	Introduction.	As	you	write	out	the	code	samples	on	the	whiteboard,	pause	at	different
stages	to	model	what	is	happening	to	the	elements	stored	in	memory.	As	the	introduction
progresses,	ask	students	to	model	the	changes	for	the	whole	class,	with	you	and	the	other
groups	replicating	their	manipulations.	The	key	to	this	introduction	is	to	have	students
working	through	the	examples	in	physical	space,	so	make	sure	that	all	groups	are	working
along	with	their	array	whiteboards.

Bell-work	and	Attendance	[5	minutes]

Introduction	&	Small-Group	Practice	[10	minutes]

1.	 Introduce	your	example	array	called	metroCardRides	(or	dailyDrive,	milesWalked,
whatever	represents	your	students’	commute	to	school),	and	hold	up	an	array	of	ints:

2.	 Briefly	ask	your	students	to	direct	you	in	constructing	and	initializing	this	array	object,
then	ask	students	for	some	ideas	as	to	how	to	move	the	5	from	the	first	element	of	the
array	to	the	last	element,	so	that	we	end	up	with		[4][3][2][1][5]	.

Give	students	a	minute	to	try	moving	numbers	around	their	whiteboards.	Most	numbers
can	be	moved	by	shifting	down	the	line	with	a	for	loop,	but	the	first	element	will	need	to
be	removed	to	allow	“space”	for	the	shift.

3.	 Ask	students	how	to	store	that	first	element	(value	5)	into	a	local	variable,	then	write	that
code	on	your	main	whiteboard.

int	first	=	metroCardRides[0];

Lesson	4.05:	Shifting	Values	&	Arrays	of	Objects

290

Redirect	students	to	the	task	of	shifting	the	rest	of	your	values	on	your	array.	As	a	class,
discuss	what	you	need	the	code	to	do,	then	ask	the	groups	to	draft	some	code	and	test
that	code	on	their	array	by	tracing	the	code	and	checking	for	errors.

4.	 The	correct	loop	for	this	loop	looks	like	this:

for	(int	j	=	0;	j	<	metroCardRides.length	–	1;	j++)	{

				metroCardRides[j]	=	metroCardRides[j	+	1];

}

If	students	use	metroCardRides.length	instead	of	metroCardRides.length	–	1,	walk
through	the	loop	on	your	array	whiteboard,	demonstrating	that	metroCardRides.length
causes	Java	to	run	off	the	end	of	the	loop	since	there	is	no	element	at	index	5.
Alternatively,	remind	students	about	zero	indexing,	and	see	if	they	catch	their	own
mistake.

5.	 Ask	students	to	remind	you	(in	pseudocode)	what	all	the	steps	are	that	are	needed	to
successfully	shift	the	numbers	in	the	array.

Model	on	your	array	whiteboard	what	steps	have	already	been	successfully	written,
and	ask	students	what	is	left	to	do	now	that	your	array	looks	like	this:

Select	a	group	to	give	you	the	last	step	that	re-inserts	the	first	element	at	index	4,
and	ask	the	class	to	finish	up	the	complete	method,	so	your	final	method	looks	like
this:

public	static	void	firstToLast	(int[]	metroCardRides)	{

				int	first	=	metroCardRides[0];

				for	(int	j	=	0;	j	<	metroCardRides.length	–	1;	j++)	{

								metroCardRides[j]	=	metroCardRides[j	+	1];

				}

				metroCardRides[metroCardRides.length	–	1]	=	first;

}

6.	 If	all	students	understand	this	method,	move	the	last	element	to	the	first	position,
shifting	the	other	elements	one	position	to	the	right.

Direct	students	to	start	working	on	this	challenge	by	re-setting	their	whiteboards
and	modeling	the	different	steps	that	need	to	occur.

Lesson	4.05:	Shifting	Values	&	Arrays	of	Objects

291

Walk	around	the	room,	checking	that	students	are	on	the	right	path.	Students
should	recognize	that	they	need	to	temporarily	store	the	last	element	as	a	variable
now	that	they’re	shifting	array	elements	in	the	other	direction.

7.	 Once	students	have	written	the	code	they	think	is	correct,	have	them	trace	their	own
code	and	manipulate	the	arrays	in	their	whiteboard.

Encourage	students	to	divide	up	this	task	so	one	student	reads	the	code	and	another
student	moves	the	elements	on	the	whiteboard.	All	members	should	be	engaged	in
error	checking.

8.	 The	correct	final	code	looks	like	this:

public	static	void	firstToLastRight	(int[]	metroCardRides)	{

				int	last	=	metroCardRides[metroCardRides.length	–	1];

				for	(int	j	=	metroCardRides.length	–	1;	j	>=	1;	j--)	{

								metroCardRides[j]	=	metroCardRides[j	–	1];

				}

				metroCardRides[0]	=	last;

}

9.	 Spot	check	student	code	for	an	off-by-one	error;	starting	the	loop	at	0	asks	Java	to	look
for	a	value	at	index	-1,	which	doesn’t	exist.	(If	students	are	modeling	their	code
execution	with	the	array	whiteboards,	they	should	catch	this.)

If	students	“correct”	this	error	by	starting	the	loop	at	1,	ask	them	to	model	the	code
execution	with	their	array	white	boards	for	you.	The	loop	overwrites	the	value	at	j	–
1	with	the	value	at	j,	so	the	array	will	start	filling	in	with	all	5s	as	the	loop	repeats
itself:

The	solution	to	this	is	tricky!	It	might	be	worth	discussing/working	as	a	class	if
groups	are	getting	stuck	on	this.	The	loop	needs	to	shift	values	right	by	starting	at
the	left	and	running	backwards.	See	if	you	can	get	students	to	brainstorm	this
solution	by	manipulating	the	values	on	their	whiteboards	first.

Lesson	4.05:	Shifting	Values	&	Arrays	of	Objects

292

Now	add	back	in	the	temporarily-stored	value	1	at	index	0.

10.	 Collect	the	array	whiteboards	(or	have	students	set	them	aside)	and	briefly	introduce
arrays	of	objects.

This	is	an	optional	extension.	Since	we	haven’t	studied	objects	yet,	you	might
want	to	leave	this	out	if	it	is	too	far	beyond	your	students’	zone	of	proximate
knowledge.

Arrays	of	objects	store	reference	to	objects	instead	of	a	primitive	type	value.
Drawing	something	like	this	might	help	student	comprehension:

Lesson	4.05:	Shifting	Values	&	Arrays	of	Objects

293

Ask	students	leading	questions,	getting	them	to	tell	you	that	because	the	array	and
the	array	contents	are	both	objects,	both	need	to	be	constructed.

Work	through	an	example	together	as	a	class;	ask	students	to	help	you	construct
an	array	of	points.	Your	code	should	look	something	like	this:

Point[]	points	=	{

			new	Point(3,	7),

			new	Point(4,	5),

			new	Point(8,	2),

			new	Point(7,	5),

			new	Point(2,	8)

};

Practice-It	Questions	[25-30	minutes]

1.	 Depending	on	the	mood	and	frustration	levels	in	the	class,	you	may	choose	to	have
students	work	in	pairs.

a.	If	students	are	really	having	a	rough	time,	work	through	the	first	Practice-It	question
together	as	a	whole	group.

b.	Put	soft,	soothing	(but	upbeat)	music	on	in	the	background	to	encourage	work

2.	 Have	students	log	in	to	Practice-It	to	complete	the	following	Practice-It	self-check
questions:

a.	arrayCodeTracing3
b.	arrayCodeTracing4
c.	arrayMystery2
d.	arrayMystery3
e.	isPalindrome

3.	 Have	students	complete	Practice-It	Exercise	append.

Lesson	4.05:	Shifting	Values	&	Arrays	of	Objects

294

4.	 If	more	25%	or	more	of	the	class	is	struggling,	return	to	whole	group	with	the	stipulation
that	students	who	understand	the	task	may	continue	working	independently.	Otherwise,
encourage	peer	tutoring,	or	using	the	textbook	or	notebooks	for	help.

Error-Checking	Algorithm	[10	minutes]

At	the	end	of	class,	if	time	permits,	have	students	draft	an	algorithm	for	error-checking	(see
below	for	details).

Accommodation	and	Differentiation
If	your	class	needs	additional	challenges,	make	the	arrays	in	your	examples	a	bit	more
sophisticated.	Change	the	values	or	add	“tricks”	to	the	code,	and	include	some	mistakes	in
your	delivery	(written	or	conceptual)	to	let	the	students	“catch”	you.	If	they	don’t	catch	you
(and	you’re	a	good	actor),	fumble	your	way	into	revealing	the	mistake	in	logic	or	code,	and
let	them	catch	you	so	you	can	model	a	positive	attitude	towards	error	checking.

If	students	finish	this	lesson	early,	have	them	draft	an	algorithm	or	checklist	that	will	help
students	check	their	loop	code	when	shifting	values	in	an	array	(what	are	common	errors	to
look	for?).

If	the	checklist	is	thorough,	brief,	and	complete,	have	students	create	a	handout	or	poster
that	you	can	hang	up	or	share	with	the	class.

To	adjust	for	reading/comprehension	challenges	in	the	ELL	classroom,	consider	having
students	work	in	small	groups	with	the	array	whiteboards	instead	of	answering	questions
within	Practice	It.	Give	each	group/student	a	print	out	with	the	questions,	and	have	them	turn
in	the	worksheets	at	the	end	of	class.

Video
BJP	7-3–1:	Array	shifting	algorithm
http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c7-3-1

CSE	142:	Mystery	code	walk	through	(9:06–21:18)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=acae034a-2b95-4eb3-
b3f0-17a77a7b5ff3&start=560

CSE	142:	Reversing	an	array	(43:42–49:30)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=acae034a-2b95-4eb3-
b3f0-17a77a7b5ff3&start=2622

Lesson	4.05:	Shifting	Values	&	Arrays	of	Objects

295

http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c7-3-1
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=acae034a-2b95-4eb3-b3f0-17a77a7b5ff3&start=560
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=acae034a-2b95-4eb3-b3f0-17a77a7b5ff3&start=2622

CSE	142:	Absolute	values	an	array	(1:42–5:11)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=acae034a-2b95-4eb3-
b3f0-17a77a7b5ff3&start=2622

Forum	discussion
Lesson	4.05	Shifting	Values	&	Arrays	of	Objects	(TEALS	Discourse	account	required)

Lesson	4.05:	Shifting	Values	&	Arrays	of	Objects

296

https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=acae034a-2b95-4eb3-b3f0-17a77a7b5ff3&start=2622
http://forums.tealsk12.org/c/unit-4/4-05-shifting-values-arrays-of-objects

Lesson	4.06	—	Nested	Loop	Algorithms	&
Rectangular	Arrays

Overview

Objectives	—	Students	will	be	able	to…

Correctly	adjust	nested	loop	headers	for	use	with	arrays.
Correctly	construct	two-dimensional	arrays.

Assessments	—	Students	will…

Complete	WS	4.6

Homework	—	Students	will…

Read	BJP	10.1	up	to	“Adding	to	and	Removing	from	an	ArrayList”
Complete	self-check	problems	#1	-	6

Materials	&	Prep
Projector	and	computer
Whiteboard	and	markers
Classroom	copies	of	WS	4.6
Array	whiteboards

Pacing	Guide

Section Total	Time

Bell-work	and	attendance 5min

Introduction/Review	of	objects	&	string	processing ≈10min

Round	Robin ≈35min

Paper	selection	&	grade	announcement 3min

Lesson	4.06:	Nested	Loop	Algorithms	&	Rectangular	Arrays

297

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit4/WS%204.6.docx

If	the	instruction	takes	longer	than	expected,	assign	the	worksheet	to	small	groups	so
students	can	work	together	collaboratively.	This	should	allow	you	to	complete	the	lesson	in
one	class	period.	Alternatively,	you	can	assign	students	to	finish	the	worksheet	at	home	for
homework,	or	make	the	worksheet	shorter.

Procedure
There	are	several	ways	you	can	teach	today’s	class.	You	should	first	check	in	with	your
students	to	see	how	prepared	they	are	for	today’s	lesson.	If	students	understood	most	of
what	they	read	for	homework	last	night,	you	can	ask	students	for	specific	questions,	cover
only	those	topics,	then	move	on	to	the	Round-Robin	activity.	If	your	class	is	mostly	confused,
you	can	re-teach	all	of	the	content,	working	through	several	examples	with	Think	Pair
Shares	before	breaking	into	the	Round	Robin	Activity.	An	optional	Programming	Challenge
is	included	at	the	end	of	the	lesson	if	your	lesson	finishes	early.

Bell-work	and	Attendance	[5	minutes]

Introduction/Review	of	Objects	&	String	Processing	[10
minutes]

1.	 Two	dimensional	arrays	come	in	handy	when	tracking	certain	types	of	data;	adjust	the
explanation	so	it’s	relevant	to	your	students	(a	grocery	store,	a	Starbucks,	a	farmer’s
market).

Previously,	we	might	have	used	an	array	to	keep	track	of	sandwich	orders	in	line	at
a	bodega:

Suppose	we	have	several	workers	at	the	bodega	making	sandwiches,	and	we	want
to	keep	track	of	the	orders	each	one	is	working	on.	We	could	use	multiple	arrays,	or
an	array	of	arrays.

To	traverse	multidimensional	arrays,	we	need	a	new	tool	to	help	us	fill	them.

2.	 Demonstrate	a	basic	nested	loop	used	to	switch	numbers	in	an	array.	Begin	by	using
the	array	whiteboard	to	demonstrate	what	you	want	the	code	to	do:

Lesson	4.06:	Nested	Loop	Algorithms	&	Rectangular	Arrays

298

Challenge	the	students	to	come	up	with	pseudocode	(or	actual	code,	if	they’re
ready	for	it)	that	prints	out	all	of	the	inversions	in	this	array.	An	inversion	is	a	pair	of
numbers	in	which	the	first	number	in	the	list	is	greater	than	the	second	number.	Be
sure	to	emphasize	that	no	elements	are	being	moved	or	shifted.	The	output	for	the
array	above	would	be:

(4,	3)

(4,	2)

(4,	1)

(3,	2)

(3,	1)

(2,	1)

An	array

would	output:

(3,	1)

(3,	2)

(4,	2)

3.	 As	your	students	are	working	on	this	problem,	encourage	them	to	use	the	whiteboard
arrays	to	organize	their	thoughts	and	visualize	the	problem.	Their	pseudocode	should
look	something	like	this:

for	(every	possible	first	value)	{

				for	(every	possible	second	value)	{

								if	(first	value	>	second	value)	{

												print	(first,	second).

								}

				}

}

As	a	whole	group,	or	in	individual	groups	(depending	on	familiarity	with	the
material),	construct	the	final	code:

Lesson	4.06:	Nested	Loop	Algorithms	&	Rectangular	Arrays

299

for	(int	i	=	0;	i	<	data.length	-	1;	i++)	{

				for	(int	j	=	i	+	1;	j	<	data.length;	j++)	{

								if	(data[i]	>	data[j])	{

												System.out.println	("("	+	data[i]	+	",	"	+	data[j]	+	")");

								}

				}

}

As	a	“Tricky	Code	Cheat	Sheet”	tip,	you	might	discuss	the	general	reminder	that	for	an
inversion,	the	second	value	has	to	appear	after	the	first	value	in	the	list.	This	means	that
you	only	want	to	compare	values	that	come	after	the	first	value,	so	the	inner	loop
initializes	at		j	=	i	+	1	.

If	students	ask	why	the	outer	loop	ends	at		data.length	–	1	,	have	them	trace	the	code
and	predict	output	using	their	whiteboards.	They	should	notice	that	since	only	pairs	of
numbers	are	being	compared,	the	last	element	of	the	array	will	never	be	a	possible	first
value.

4.	 Ask	a	volunteer	student	to	help	you	build	a	physical	representation	of	a
multidimensional	array	(an	array	of	arrays).	Demonstrate	the	code	used	to	create	arrays
of	multiple	dimensions,	and	have	students	gather	array	whiteboards	from	around	the
room	to	show	what	the	arrays	would	look	like	in	memory:

	double	:	one	double	value

	double[]	:	a	1	dimensional	array	of	doubles

	double[][]	:	a	2	dimensional	array	(grid)	of	doubles

	double[][][]	:	a	3	dimensional	array	(cube)	of	doubles

Lesson	4.06:	Nested	Loop	Algorithms	&	Rectangular	Arrays

300

An	array	constructed	with	the	code	below	has	2	rows	and	3	columns:

double[][]	ages	=	new	double[2][3];

Have	students	index	the	array	for	you:

You	might	opt	to	give	students	this	general	formula	for	the	syntax	of	declaring	and
constructing	a	multidimensional	array:

5.	 Run	through	some	examples	with	your	students:

To	access	the	1 	element	of	the	2 	row:		ages[1][0]	

To	access	all	elements	of	the	1 	row:		ages[0]	

To	access	all	elements	of	the	2 	row:		ages[1]	

6.	 Multidimensional	arrays	can	also	be	passed	as	parameters.	Have	students	trace	the
flow	of	control	and	predict	the	output	of	the	code	below:

public	static	void	print	(double[][]	grid)	{

				for	(int	i	=	0;	i	<	grid.length;	i++)	{

								for	(int	j	=	0;	j	<	grid[i].length;	j++)	{

												System.out.print(grid[i][j]	+	"	");

								}

								System.out.println();

				}

}

Ask	students	why	you	referenced		grid.length		in	the	outer	loop	(the	number	of
rows),	and	what		grid[i].length		refers	to	(the	number	of	columns).

As	a	final	tip,	let	students	know	that	for	multidimensional	arrays,		Arrays.toString	
won’t	work	correctly,	and	they	should	use		Arrays.deepToString		instead.

Round	Robin	[45	minutes]

1.	 Round-robin	is	a	drilling	and	error-checking	exercise	used	with	worksheets.	At
minimum,	there	should	be	1	question	for	each	student	(e.g.	a	class	of	15	students	would
need	a	worksheet	with	15	or	more	questions).	Students	write	their	name	on	the

st nd

st

nd

Lesson	4.06:	Nested	Loop	Algorithms	&	Rectangular	Arrays

301

worksheet,	complete	the	first	problem,	then	pass	the	paper	to	the	student	on	the	right
(or	whatever	direction	you	choose).	The	next	student	first	checks	the	previous	answer,
correcting	it	if	need	be,	then	completes	the	second	question.	Each	student	then	passes
on	the	paper	again.	By	the	end	of	the	exercise,	each	student	has	checked	and
completed	each	question	on	the	worksheet.

2.	 The	hook	is	that	you	choose	only	ONE	worksheet	from	the	pile	to	grade.	All	students
get	a	grade	from	that	one	worksheet.	This	keeps	students	invested	throughout	the
exercise.	Advanced	students	will	check	questions	throughout	the	whole	worksheet,	and
all	students	will	try	their	best	to	catch	their	own	(and	others’)	mistakes,	since	the	whole
class	shares	the	randomly-selected-paper’s	grade.

3.	 You	should	time	each	question/checking	interval,	and	call	“TIME!”	when	it	is	time	for
students	to	pass	along	papers.

a.	Questions	1–4	should	take	≈1	minute	each.
b.	Questions	5–9	should	take	≈2	minutes	each.
c.	Questions	10–12	should	take	≈3	minutes	each.
d.	Questions	13–14	should	take	≈4	minutes	each.
e.	Questions	15–16	[Bonus]	should	take	≈5	minutes	each.

Adjust	the	timing	on	these	questions	as	needed,	but	try	to	keep	a	brisk	pace.	Part	of	the
engagement	factor	is	the	sense	of	urgency.

Paper	Selection	&	Grade	Announcement	[3	minutes]

If	time	allows,	randomly	select	the	worksheet	and	announce	the	class	grade	with	a	bit	of
fanfare,	congratulating	the	class	on	a	job	well	done.	If	there	are	any	incorrect	answers,	use
the	time	at	the	end	of	class	to	review	the	correct	solutions	or	take	questions.

Accommodation	and	Differentiation
To	optimize	this	exercise,	you	might	consider	rearranging	students	(or	creating	a	passing-
path)	that	mixes	students	of	different	coding	abilities.	The	advanced	students	can	use	the
extra	time	to	correct	mistakes	made	by	others;	if	they	are	sitting	in	proximity	to	the	student
that	made	the	error,	they	will	have	a	better	chance	of	explaining	the	correct	answer	to	them.

Due	to	the	brisk	pace	of	the	round-robin	rotation,	there	shouldn’t	be	too	much	down	time	for
any	one	student.	If	your	students	are	finishing	faster	than	the	time	intervals	indicated,	reduce
the	amount	of	time	allotted	to	maintain	a	sense	of	urgency/keep	students	on	task.	If	finished
early,	offer	a	Programming	Challenge	while	you	grade	the	sample	worksheet.

Lesson	4.06:	Nested	Loop	Algorithms	&	Rectangular	Arrays

302

Common	Mistakes
Two	dimensional	arrays	common	mistakes:
http://interactivepython.org/runestone/static/JavaReview/Array2dBasics/a2dMistakes.html

Videos
BJP	7-3-2,	Tallying	with	an	Array
http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c7-3-2

Forum	discussion
Lesson	4.06	Nested	Loop	Algorithms	&	Rectangular	Arrays	(TEALS	Discourse	account
required)

Lesson	4.06:	Nested	Loop	Algorithms	&	Rectangular	Arrays

303

http://interactivepython.org/runestone/static/JavaReview/Array2dBasics/a2dMistakes.html
http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c7-3-2
http://forums.tealsk12.org/c/unit-4/4-06-nested-loop-algorithms-rectangular-arrays

Lesson	4.07	—	ArrayList

Overview

Objectives	—	Students	will	be	able	to…

Construct	code	using	ArrayList.
Predict	the	output	of	methods	that	take	arrays	as	parameters	and/or	return	arrays.

Assessments	—	Students	will…

Evaluate	statements	and	predict	output	during	a	game	of	grudgeball

Homework	—	Students	will…

Outline	Chapter	7	and	BJP	10.1	“ArrayList”
Complete	self-check	questions	#3-6	and	exercise	#3

Materials	&	Prep
Projector	and	computer	(optional)
White	paper	and	markers
Classroom	copies	of	Poster	4.7
Rules	for	grudgeball	(see	website	for	details:
http://toengagethemall.blogspot.com/2013/02/grudgeball-review-game-where-kids-
attack.html)
Team	assignments	that	divide	your	class	into	5	or	6	teams
Nerf	hoop	&	ball	(or	wastepaper	and	trash	can)
Taped	2-	and	3-point	lines

Briefly	review	the	rules	of	Grudgeball	if	you	have	forgotten	them.	If	you	have	removed	your	2
and	3	point	lines	from	last	time	you	played,	test	out	your	2	and	3	point	lines	before	class
begins.

Pacing	Guide

Lesson	4.07:	ArrayList

304

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit4/Poster%204.7.pptx
http://toengagethemall.blogspot.com/2013/02/grudgeball-review-game-where-kids-attack.html

Section Total	Time

Bell-work	and	attendance 5min

Introduction	and	note-taking 15min

Grudgeball 35min

Procedure
To	hook	your	class	for	today’s	material,	and	if	space	and	whiteboard	setup	allow,	set	up	the
grudgeball	“court”	and	scoreboard	before	class	begins.	Remind	students	that	lecture	content
will	be	tested	during	the	game.

Bell-work	and	Attendance	[5	minutes]

Introduction	and	note-taking	[10	minutes]

1.	 Ask	students	to	name	some	limitations	of	arrays:	shifting	values	is	an	ordeal,	adding
elements	requires	forming	a	new,	larger	array	and	copying	values	over,	deleting
elements	leaves	empty,	unused	indexes.

2.	 Introduce	the	more	flexible	ArrayList	(be	sure	to	remind	students	that	they	need	to
	import	java.util.ArrayList):

Uses	arrays	to	store	values	(fast	random	access)

The	ArrayList	class	contains	methods	to	make	add,	remove,	and	shift	values	easily.

ArrayList	takes	a	type	parameter	to	determine	what	kind	of	values	it	will	use	as
elements:

	ArrayList<String>		stores	a	list	of	Strings.
	ArrayList<Point>		stores	a	list	of	Points.

If	you	forget	to	pass	a	parameter	with	the	type	you	want	the	array	to	contain,	the
code	won’t	execute.

3.	 Construct	an	ArrayList	of	Strings	to	demonstrate	syntax:

	ArrayList<String>		spongebob	=	new		ArrayList<String>		();	

Even	though	the	notation	looks	a	bit	different,	the	syntax	is	fairly	similar	to	what
we’ve	used	in	the	past.		ArrayList<type>		is	how	we	indicate	the	type—just	like
you’d	use	int	when	declaring	a	one	dimensional	or	two	dimensional	array.

	ArrayList<String>		spongebob		=	new	ArrayList<String>();	

Lesson	4.07:	ArrayList

305

This	is	the	name	of	your	ArrayList.	It	can	be	any	non-keyword	that	you	want	to	use.

	ArrayList<String>	spongebob	=		new		ArrayList<String>();	

Ask	students	if	they	can	tell	you	what	the	new	keyword	is	for	(we	use	the	new
keyword	when	constructing	an	object).

	ArrayList<String>	spongebob	=	new	ArrayList<String>		()		;	

Whenever	you	see	empty	parentheses,	it	means	that	you’re	not	using	parameters.

4.	 Using	Poster	4.7,	review	some	of	the	methods	you	can	use	to	manipulate	ArrayLists.
Add	some		spongebob		elements	to	your		ArrayList	:

spongebob.add	("Patrick	Star");

spongebob.add	("Squidward	Tentacles");

spongebob.add	("Mr.	Krabs");

spongebob.add	("Pikachu");

spongebob.add	("Sandy	Cheeks");

Ask	students	for	suggestions	on	how	to	print	out	this	ArrayList,	and	ask	them	to
predict	the	output:

System.out.println("Some	of	the	characters	on	Spongebob	are	"	+	spongebob);

Students	will	probably	notice	that	Pikachu	is	not	a	character	in	the	Spongebob
cartoon;	ask	them	to	refer	to	Poster	4.7	to	suggest	some	code	to	remove	Pikachu
from	the	list:

spongebob.remove(3);				//	Pikachu	is	stored	at	index	3

Now	ask	students	to	add	another	character	from	the	show	to	the	middle	of	the	list,
at	index	3:

spongebob.add(3,	"Plankton");

The	first	parameter	3	indicates	the	target	location,	and	the	second	parameter
	"Plankton"		indicates	the	String	to	be	stored	there.

["Patrick	Star",	"Squidward	Tentacles",	"Mr.	Krabs",	"Sandy	Cheeks"]

becomes

Lesson	4.07:	ArrayList

306

["Patrick	Star",	"Squidward	Tentacles",	"Mr.	Krabs",	"Plankton"]

5.	 Briefly	review	a	few	other	useful		ArrayList		methods.	Students	will	have	an	opportunity
to	practice	(and	you	will	have	an	opportunity	to	reteach	if	needed)	during	Grudgeball,	so
this	can	be	a	quick	overview:

ARRAYLIST	METHODS	OVERVIEW

To	get	an	element	from	the		ArrayList		and	print	it

System.out.println(spongebob.get(3));

To	get	the	number	of	elements	in	the	ArrayList	and	print	it

System.out.println(spongebob.size());

To	add	all	the	elements	in	the	ArrayList

int	sum	=	0;

for	(int	=	0;	i	<	spongebob.size();	i++)	{

				String	s	=	spongebob.get(i);

				sum	+=	s.length();

}

System.out.println("Total	of	lengths	=	"	+	sum);

Have	students	justify	your	code	choices,	and	ask	a	student	(or	students)	to	trace	the	code
and	narrate	the	steps	for	the	class.

To	replace	an	array	element	(no	shifting)

spongebob.set(3,	"Plankton");

This	would	replace	Pikachu	with	Plankton	directly,	without	requiring	the	shifting	of	the	array.

To	clear	an	array

spongebob.clear();

Lesson	4.07:	ArrayList

307

This	removes	all	elements	from	the	list	and	leaves	null	values	at	each	index	(it’s	an	empty
array	now).

Grudgeball	[35	minutes]

1.	 Divide	students	into	their	assigned	teams.

2.	 Review	the	rules	for	grudgeball,	and	have	the	students	repeat	the	rules	back	to	you.

3.	 Using	the	problems	listed	below	(and	any	you	may	add,	depending	on	your	class’
needs),	play	grudgeball	until	a	team	wins,	or	until	the	class	period	ends.

a.	If	a	class	gets	the	answer	wrong,	BRIEFLY	pause	the	game	to	have	students	offer
corrections	before	moving	to	the	next	team’s	question.

b.	If	correction	seems	to	be	dragging	on,	jump	in	and	quickly	re-teach	using	the
incorrect	answer	as	your	example.	It	is	important	to	keep	the	pace	going	to	maintain
student	interest	in	the	game!

Gudgeball	problems	&	answers	have	been	grouped	assuming	that	you	have	6	teams.	If	you
have	fewer	teams,	each	“round”	will	be	shifted	accordingly,	so	you	may	have	rounds	where
different	teams	are	practicing	different	concepts.	Judge	each	team’s	knowledge	gaps,	and
adjust	which	questions	you	ask	each	group	accordingly.

GRUDGEBALL	PROBLEMS	AND	ANSWERS

Use	a	type	parameter	to	declare	an	ArrayList	that:

a.	Stores	a	list	of	Strings	→		ArrayList<String>	
b.	Stores	a	list	of	integers	→		ArrayList<Integer>		(Wrapper	class)
c.	Stores	a	list	of	Points	→		ArrayList<Point>	
d.	Stores	a	list	of	doubles	→		ArrayList<Double>		(Wrapper	class)
e.	Stores	a	list	of	soccer	teams	→		ArrayList<String>	
f.	Stores	a	list	of	temperatures	→		ArrayList<Double>		(Wrapper	class)

Construct	an	ArrayList:

g.	Called	z	that	stores	a	list	of	ints	→		ArrayList<int>	z	=	new	ArrayList<Integer>();	

h.	Called	list	that	stores	a	list	of	Strings	→		ArrayList<String>	list	=	new	ArrayList<String>
();	

i.	Called	jose	that	stores	a	list	of	Points	→		ArrayList<Point>	jose	=	new	ArrayList<Point>();	

Lesson	4.07:	ArrayList

308

j.	Called	pokemon	that	stores	a	list	of	Pokémon	→		ArrayList<String>	pokemon	=	new
ArrayList<String>();	

k.	Called	metroCard	that	stores	the	number	of	metrocard	rides	each	student	has	left	on	their
card	today	→		ArrayList<Integer>	metroCard	=	new	ArrayList<Integer>();	

Accommodation	and	Differentiation
In	ELL	classrooms,	read	the	questions	aloud	in	addition	to	showing	the	question	on	the
board	or	projector.	Consider	distributing	a	worksheet	with	the	questions	on	it	so	students	can
write	down	answers	during	the	game.

Common	Mistakes
ArraysList	common	mistakes:
http://interactivepython.org/runestone/static/JavaReview/ListBasics/listMistakes.html

Misconceptions
Java	uses	3	different	syntax	for	getting	lengths	which	is	a	source	of	student	confusion:

String.length()

array.length

ArrayList.size()

Videos
BJP	10–1,	Removing	from	an	ArrayLiast
http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c10-1

BJP	10–2,	Adding	to	an	ArrayList	of	Integers
http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c10-2

CSE	142,	ArrayList	(6:40–25:29)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=efa0eeba-81bc-497c-
a1ae-46cda247c563&start=400

Lesson	4.07:	ArrayList

309

http://interactivepython.org/runestone/static/JavaReview/ListBasics/listMistakes.html
http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c10-1
http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c10-2
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=efa0eeba-81bc-497c-a1ae-46cda247c563&start=400

CSE	142,	Wrapper	Class	(41:53–44:54)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=efa0eeba-81bc-497c-
a1ae-46cda247c563&start=2510

Forum	discussion
Lesson	4.07	ArrayList	(TEALS	Discourse	account	required)

Lesson	4.07:	ArrayList

310

https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=efa0eeba-81bc-497c-a1ae-46cda247c563&start=2510
http://forums.tealsk12.org/c/unit-4/4-07-arraylist

Lesson	4.08	—	Finding	&	Fixing	Errors

Overview

Objectives	—	Students	will	be	able	to…

Find	errors	in	their	returned	homework	assignments.
Correct	their	code

Assessments	—	Students	will…

Re-submit	all	homework	assignments	with	corrected	answers.

Homework	—	Students	will…

Review	materials	for	the	Magpie	lab	by:
Reviewing	all	the	blue	pages	at	the	end	of	Chapter	7	and	Chapter	10	(only	the
material	for	section	10.1	of	Chapter	10)

Submit	5	questions	for	review	in	class	tomorrow	using	electronic	survey
Update	all	summaries	in	notebook	for	the	upcoming	notebook	check

Materials	&	Prep
Any	student	homework	assignments	that	you	have	not	yet	returned
Student	self-help	system	(such	as	C2B4	or	student	pairing)
Electronic	survey	for	student	review	requests

The	homework	tonight	asks	students	to	submit	5	questions	for	review.	Create	an	electronic
survey	for	students	to	complete	with	6	text	fields,	one	for	name,	and	5	for	questions	they
have	about	Ch.	7	and	Ch.	10.1	content.	Set	a	deadline	by	which	time	students	must	have
submitted	5	questions	from	the	chapters	that	they	would	like	to	see	reviewed	after
completion	of	the	Magpie	lab.	If	students	do	not	have	questions,	stipulate	that	they	still	have
to	submit	something	to	receive	credit,	even	if	it	is	only	questions	they	think	other	students
may	have.

You	should	score	homework	from	LP	4.7	while	students	are	working	so	you	can	turn	back
those	assignments	during	this	class	period.

Lesson	4.08:	Finding	&	Fixing	Errors

311

Pacing	Guide

Section Total	Time

Bell-work	and	attendance 5min

Introduction	and	homework	distribution 5min

Student	work 35min

Students	trade	work,	check,	and	submit 10min

Procedure
Today	we	continue	reinforcing	concepts	and	applying	the	tools,	procedures,	and	code	that
were	introduced	last	week.	Students	will	have	the	opportunity	to	correct	any	incorrect
homework	or	classwork	assignments.	If	students	did	not	have	time	to	finish	the	homework
from	yesterday,	you	may	allow	them	time	to	work	on	that	today.

Bell-work	and	Attendance	[5	minutes]

Introduction	and	Homework	Distribution	[5	minutes]

1.	 Return	student	homework	packets,	or	have	students	place	their	returned	homework	in	a
pile	on	their	desk.

2.	 Explain	to	students	that	they	have	the	opportunity	to	get	full	credit	on	their	homework
grades	by	correcting	them	now,	in	class.	Ask	students	for	suggestions/ideas	on	how	to
make	sure	they	don’t	miss	any	errors.

a.	By	now	students	should	be	used	to	relying	on	their	error	checklist/algorithm.

Student	Work	[35	minutes]

Have	students	work	individually	to	correct	their	homework	grades.

Offer	time	checks	for	students	so	they	stay	on	task.

If	students	have	not	finished	homework	assignments,	allow	them	time	today	to	complete
these	assignments	to	turn	in	for	partial	credit.

Students	trade	work,	check,	and	turn	in	[10	minutes]

Lesson	4.08:	Finding	&	Fixing	Errors

312

At	the	end	of	class,	have	students	trade	their	homework	assignments	to	evaluate	each
other’s	corrections	before	submission.

Accommodation	and	Differentiation
In	ELL	classrooms,	pair	students	and	allow	them	to	work	together	to	correct	their	work.

For	those	students	who	have	nothing	to	correct	(or	finish	very	early),	reward	them	with	silent
free	time,	or	allow	them	to	work	on	a	free-choice	programming	project.

Forum	discussion
Lesson	4.08	Finding	&	Fixing	Errors	(TEALS	Discourse	account	required)

Lesson	4.08:	Finding	&	Fixing	Errors

313

http://forums.tealsk12.org/c/unit-4/4-08-finding-fixing-errors

Lesson	4.09	—	Magpie	Lab

Overview

Objectives	—	Students	will	be	able	to…

Complete	a	long-form	lab,	using	if	statements,	algorithms,	the	Sting	class,	arrays,	and
ArrayLists.

Assessments	—	Students	will…

Complete	CollegeBoard’s	AP	CS	A	Magpie	Chatbot	Lab
Answer	assessment	questions	on	the	fourth	class	exam

Homework	—	Students	will…

Complete	homework	assignments	as	outlined	in	the	Pacing	Guide	below

Materials	&	Prep
Projector	and	computer
Magpie	Chatbot	Lab	Teacher’s	Guide
Classroom	copies	of	the	Magpie	Chatbot	Lab	Student	Guide
Associated	Magpie	Chatbot	Files

Read	through	the	Teacher	and	Student	guides	ahead	of	time	to	familiarize	yourself	with	the
parts	of	this	long-form	lab.	Using	the	guides,	complete	the	lab	on	your	own	to	spot	possible
challenges	for	your	students.	Upload	all	student	files	onto	each	computer	desktop	for
student	access.

Pacing	Guide:	Day	1

Lesson	4.09:	Magpie	Lab	(5	Days)

314

Section Total	Time

Student	Activity	1	&	2 Full	class	-	students

Notebook	checks Full	class	-	teacher

Homework:
Read	Ch.	6	in	the	Barron	Review	Book TONIGHT

Pacing	Guide:	Day	2

Section Total	Time

Student	Activity	2,	continued Full	class	-	students

Notebook	checks Full	class	-	teacher

Homework:
Complete	practice	questions	#1-18	in	Barron TONIGHT

Pacing	Guide:	Day	3

Section Total	Time

Student	Activity	3 Full	class	-	students

Notebook	checks	(if	not	completed) Full	class	-	teacher

Homework:
Complete	practice	questions	#19-37	in	Barron TONIGHT

Pacing	Guide:	Day	4

Section Total	Time

Student	Activity	4 Full	class	-	students

Notebook	checks	(if	not	completed) Full	class	-	teacher

Homework:
Check	and	correct	answers	in	Barron TONIGHT

Pacing	Guide:	Day	5

Lesson	4.09:	Magpie	Lab	(5	Days)

315

Section Total	Time

Student	Activity	5 Full	class	-
students

Check	for	student	review	questions Full	class	-
teacher

Homework:
Check	Barron	Review	Book	for	highlighting,	note	taking,	and	practice
test	completion/correction

TONIGHT

Procedure
All	guides,	sample	code,	answer	code,	and	example	code	may	be	found	in	the	folder
“Milestone	1—Magpie	Chatbot	Lab.”	Assessment	questions	included	on	the	Teacher’s	guide
have	been	moved	to	the	Unit	4	exam.

About	Barron’s

Barron’s	is	an	AP	CS	A	review	book	that	some	schools	provide	students.	If	your	school
doesn’t	provide	Barron’s	there	are	many	alternative	homework	assignments	that	can	be
found	at	codingbat.com/java	or	practice-it.

Alternatively,	you	can	save	time	spent	on	the	lab	by	checking	activities	as	homework.

General	Project	Notes

To	help	students	start	the	lab	smoothly,	start	Activity	2	as	a	whole	group.	Open	Eclipse
and	guide	students	through	opening	the	Magpie	and	Magpie	Runner	files.

Encourage	students	to	use	their	Tricky	Code	Cheat	Sheets,	4	Commandments	of
Scope,	notebooks,	textbooks,	classroom	posters,	and	homework	assignments.

Offer	occasional	time-checks	to	help	keep	students	on	pace.

Grade	notebooks	and	review	books	in	between	helping	students	so	students	can	keep
notebooks	for	homework	and	studying	in	the	evenings.

Accommodation	and	Differentiation
In	ELL	classrooms,	read	all	directions	aloud	before	breaking	into	individual	practice,	and
allow	up	to	twice	the	amount	of	time	for	completion	of	the	lab.	As	needed,	allow	students	to
pair	up	to	help	each	other	with	reading	comprehension	(but	remind	students	that	they	each

Lesson	4.09:	Magpie	Lab	(5	Days)

316

must	submit	their	own	code).	Each	day	that	you	begin	the	lab,	start	with	a	quick	survey	of
student	concerns	and	questions.

Differentiation	of	the	lab	assignment	can	be	found	on	page	14	of	the	Teacher’s	guide.

Forum	discussion
Lesson	4.09	Magpie	Lab	(TEALS	Discourse	account	required)

Lesson	4.09:	Magpie	Lab	(5	Days)

317

http://forums.tealsk12.org/c/unit-4/4-0901-0905-magpie-lab

Lesson	4.10	—	Review

Overview

Objectives	—	Students	will	be	able	to…

Identify	weaknesses	in	their	Unit	4	knowledge.

Assessments	—	Students	will…

Create	a	personalized	list	of	review	topics	to	guide	tonight’s	study	session.

Homework	—	Students	will…

Study	for	tomorrow’s	test	using	targeted	review	list

Materials	&	Prep
Projector	and	computer
Whiteboard	and	marker
Results	from	electronic	survey	of	review	topics
Classroom	copies	of	the	practice	test	WS	4.10

Once	students	have	submitted	their	review	requests,	assemble	those	topics	into	categories
and	prepare	to	re-teach	the	topics	as	needed.	If	you	are	crunched	for	time,	hold	the	review
session	during	the	second	half	of	Day	5	of	the	Magpie	Chatbot	Lab.

Pacing	Guide

Section Total	Time

Bell-work	and	attendance 5min

Review	of	student	questions 30min

Sample	test	review 15min

Check	student	study	lists 5min

Lesson	4.10:	Review

318

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit4/WS%204.10.docx

Procedure

Bell-work	and	Attendance	[5	minutes]

Review	of	Student	Questions	[30	minutes]

1.	 Clearly	indicate	that	you	expect	all	students	to	have	a	list	of	review	topics	to	study	this
evening.	Periodically	remind	students	that	this	list	will	be	checked	at	the	end	of	class.

2.	 Begin	with	a	review	of	student-submitted	questions	before	reviewing	the	practice
questions.

Sample	Test	Review	[15	minutes]

1.	 Begin	review	with	practice	test	WS	4.10.	Have	students	work	through	section	I
questions,	then	review	the	answers	as	a	class.

2.	 Give	students	time	to	complete	section	II	questions,	then	review	the	answers	as	a	class.

3.	 Finally,	work	through	the	various	review	topics,	prioritizing	questions	that	popped	up	the
most.

Some	questions	you	may	address	while	working	through	the	sample	test.

Be	ready	for	additional	questions	to	pop	up	as	you	go.	Save	yourself	the	work	and
use	old	homework	questions	and	student-generated	test	questions	as	examples	to
work	through.

4.	 Use	a	combination	of	group-solving	questions	on	the	whiteboard,	think-pair-share,	and
timed-response	as	review	strategies.

5.	 After	you’ve	completed	reviewing	an	idea,	remind	the	class	that	they	should	write	down
that	topic	if	they	feel	they	still	have	to	review	it	tonight.

Check	Student	Study	Lists	[5	minutes]

Spend	the	last	5	minutes	of	class	checking	each	student’s	review	topic	list.

Forum	discussion
Lesson	4.10	Unit	4	Review	(TEALS	Discourse	account	required)

Lesson	4.10:	Review

319

http://forums.tealsk12.org/c/unit-4/4-1-review

Lesson	4.10:	Review

320

Lesson	5.00	—	Test	Review	&	Reteach

Overview

Objectives	—	Students	will	be	able	to…

Re-learn	or	strengthen	content	knowledge	and	skills	from	Unit	4.

Assessments	—	Students	will…

Re-submit	test	answers	with	updated	corrections	for	partial	or	full	credit
Credit	depends	on	instructor	preference

Homework	—	Students	will…

Read	BJP	8.1
Correct	any	incorrect	test	answers	by	re-answering	on	a	separate	sheet	of	paper

To	get	back	credit,	they	must	justify	their	new	answers
Staple	new	answer	sheet	to	old	test	and	turn	in	tomorrow

Materials	&	Prep
Projector	and	computer
Whiteboard	and	markers
Corrected	student	tests
Student	grades	(posted	online,	emailed	to	students,	or	handed	back	on	paper	in	class)
Digital	copy	of	test	questions	for	projector

Pacing	Guide

Section Total	Time

Bell-work	and	attendance 5min

Class	discussion	(if	needed) 10min

Test	review	and	reteach 35min

Check	student	notes	and	return	tests 5min

Lesson	5.00:	Test	Review	&	Reteach

321

Procedure
Return	student	grades	before	class	begins	or	while	students	are	completing	the	bellwork.

Do	not	return	students’	tests	before	the	review	session,	since	you	want	to	motivate	students
to	pay	attention	to	the	entire	review,	taking	supplemental	notes	the	entire	time.

Bell-work	and	Attendance	[5	minutes]

Class	Discussion	(if	needed)	[10	minutes]

1.	 If	grades	are	low,	invite	the	class	to	a	discussion	of	what	can	be	improved.	Begin	with
student	complaints	and	suggestions	to	build	student	buy-in.	Ask	students:

how	they	felt	they	were	going	to	do	before	the	test
what	surprised	them	once	they	were	taking	the	test
what	they	felt	worked	in	the	first	unit	(lessons,	review	strategies,	assignments)
what	do	they	think	they	want	to	change	for	the	second	unit

2.	 Once	you	feel	that	a	dialogue	has	been	established,	validate	students’	feelings,	then
challenge	them	(e.g.	AP	courses	are	stressful,	but	this	is	good	practice	for	college,
where	the	pace	is	faster	and	professors	don’t	give	personalized	instruction).

Test	Review	and	Reteach	[30	minutes]

1.	 Walk	the	students	through	each	question	on	the	test,	glossing	over	questions	that
everyone	answered	correctly.

a.	You	can	ask	for	students	to	volunteer	answers,	or	call	on	students	randomly.	Make
sure	that	students	explain	their	logic	when	they	answer.	If	a	student	gives	an	incorrect
answer,	the	explanation	will	tell	you	what	you	need	to	re-teach	or	clarify.

b.	Do	not	skip	questions	that	everyone	answered	correctly,	but	do	not	spend	more	than
the	time	it	takes	to	read	the	question,	and	congratulate	students’	correct	answers.

2.	 Project	a	copy	of	each	question	as	you	review—this	will	help	students	recall	the
question/process	the	information.

3.	 Make	sure	that	students	are	taking	notes	during	the	re-teach,	reminding	students	that
for	homework,	they	will	have	an	opportunity	to	win	back	some	of	the	points	on	their
exam.

4.	 For	Section	II	questions,	select	a	sample	of	student	work	(with	any	identifying
information	obscured),	and	work	through	the	answer	together	as	a	class.

Lesson	5.00:	Test	Review	&	Reteach

322

Check	student	notes	and	return	tests	[5	minutes]

At	the	end	of	class,	check	student	notes,	and	return	the	tests	in	hard	copy	form	if	applicable.

Accommodation	and	Differentiation
Encourage	advanced	students	to	take	on	additional	programming	challenges.	One	easy	way
to	do	this	is	to	assign	Programming	Projects	from	the	blue	pages	at	the	end	of	each	Chapter.

If	you	have	a	few	students	that	are	struggling	with	the	class,	choose	these	students	to	create
your	classroom	posters	after	school	or	for	extra	credit.

Forum	discussion
Lesson	5.00	Test	Review	&	Reteach	(TEALS	Discourse	account	required)

Lesson	5.00:	Test	Review	&	Reteach

323

http://forums.tealsk12.org/c/unit-5/5-00-test-review-reteach

Lesson	5.01	—	Object	Oriented
Programming

Overview

Objectives	—	Students	will	be	able	to…

Describe	the	relationship	between	classes,	objects,	and	client	code.
Predict	the	output	of	the	code	that	uses	objects.

Assessments	—	Students	will…

Complete	Practice-It	questions

Homework	—	Students	will…

Read	BJP	8.2	up	to	“Mutators	and	Accessors”

Materials	&	Prep
Projector	and	computer
Whiteboard	and	markers
Classroom	copies	of	WS	5.1.1
Classroom	copies	of	the	textbook	(or	just	section	8.1)
Bookmarks	on	student	computers	(or	emailed	links)	to	Bulbapedia

If	you	decide	to	email	or	link	to	the	Pokemon	wiki	page,	the	complete	address	is:
http://bulbapedia.bulbagarden.net/wiki/Main_Page.	Students	can	also	easily	search	for	the
page	by	typing	in	“bulbapedia”	or	“pokemon	wiki.”

Pacing	Guide

Lesson	5.01:	Object	Oriented	Programming

324

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit5/WS%205.1.1.pdf
http://bulbapedia.bulbagarden.net/wiki/Main_Page

Section Total	Time

Bell-work	and	attendance 5min

Introduction:	Discussion 10–30min

Introduction:	Syntax	Notes 10–20min

Activity	1:	Practice-It 15min

Activity	2:	Researching	for	a	custom	class 15min

Read	through	all	of	the	Instructor’s	notes	before	you	plan	this	lesson.	In	some	classrooms,
it	might	be	best	if	you	extend	this	into	a	two-day	lesson.	It	is	worth	it	to	spend	plenty	of
time	discussing	concepts	of	design	and	debating	choices	to	drive	home	the	idea	that	object
and	class	construction	are	completely	customizable.	If	you	are	expanding	this	lesson	plan	to
a	two-day	lesson,	use	graphic	organizer	WS	5.1	to	help	students	organize	their	thoughts
from	the	class	discussion	during	Day	1.	A	suggested	stopping	point	for	Day	1	syntax/notes	is
indicated	by	a	dotted	line.

On	Day	2,	start	with	the	syntax	notes	below	the	dotted	line,	then	invite	students	to	complete
Activity	1	and	2.

Procedure
If	you	have	the	option	to	rearrange	seating,	set	up	student	seats	in	a	circle	for	class
discussion.	As	students	filter	in,	start	small	discussions	with	the	following	talking	points:	To
write	personalized	programs	that	handle	real-life	data,	they’ll	need	to	know	how	to	design
and	create	their	own	models	of	real-life	events,	phenomena,	or	processes.	Rather	than
learning	new	structural	code,	they’re	going	to	start	focusing	on	making	design	decisions.

Up	until	now	we	have	used	pre-made	objects	and	classes	that	are	given	to	us	by	importing
java	classes	(bonus	points	if	students	can	name	some	examples).	Moving	forward,	they’ll	be
using	customized	classes	that	they’ve	built	themselves.

Bell-work	and	Attendance	[5	minutes]

Introduction:	Discussion	[10-30	minutes]

1.	 Give	students	permission	to	put	down	their	pencils	to	participate	in	a	discussion	(you
can	review	important	definitions	as	part	of	a	recap	before	class	practice).	It’s	important
to	get	students	used	to	critiquing	and	debating	design	decisions	before	getting
into	the	nuts-and-bolts	of	objects.

Lesson	5.01:	Object	Oriented	Programming

325

What	do	we	mean	by	“models	of	real-life	events,	phenomena,	or	processes?”	In
programming,	objects	are	models	of	something	else:

The	object	forecast	is	a	model	of	a	future	weather	event.
The	object	student1	is	a	model	of	an	actual	student	that	goes	to	this	school.
The	object	myDog	is	a	model	of	your	pet	dog.

What	do	we	mean	by	making	“design	decisions?”	To	model	a	forecast,	student,	or
dog,	you	need	to	make	certain	decisions	about	what	data	and	actions	are	important
to	your	model.	Ask	students	to	offer	some	design	decisions	for	a	forecast	object:

i.	 What	types	of	data	are	important	for	a	local	forecast?

ii.	 What	sorts	of	data	might	be	important	for	a	student	writing	the	forecast	object
in	Alaska?	Arizona?	Oklahoma?

iii.	 What	behavior	(methods)	might	we	want	our	forecast	object	to	have?

Discussion	points	to	bring	up/guide	students	to:

If	you’re	interested	in	forecasting	a	tornado,	you	might	choose	to	model	the
weather	with	finer	granularity	than	you	might	opt	for	if	predicting	rainfall	or
cloud	cover.

Different	model	components	will	be	appropriate	in	different	situations.

Does	a	forecast	written	by	a	student	in	Arizona	need	the	same	inputs	and
methods	as	a	forecast	in	Oklahoma?	What	might	be	different?	The	same?

2.	 Work	through	another	design	discussion	about	the	student1	or	myDog	object.	How
might	you	design	the	student1	object	in	a	music	school?	A	martial	arts	school?	A	high
school	or	college?	What	behaviors	(methods)	and	data	(states)	might	they	have	in
common?	Which	would	be	different?	(Both	the	music	school	and	martial	arts	school
might	include	fields	for	billing	information,	but	only	the	martial	arts	school	would	have
fields	with	emergency	medical	information.)

If	students	are	suggesting	overly-complex	models	of	student1	or	myDog,	use	it	as
an	opportunity	to	discuss	complexity.	Is	it	always	a	good	idea	to	add	states	and
behaviors	(data	and	methods)?	When	is	it	appropriate	to	make	a	model	more
complex?	When	do	you	want	to	keep	it	simple?

The	rule	of	thumb	is	to	only	include	the	complexity	you	need.	If	this	language	works
for	your	class,	tell	them	to	always	design	around	principles	of	completeness,
robustness,	and	simplicity.

Completeness:	Does	this	model	do	everything	I	need	it	to	do?	Does	it	contain
all	the	data	I	need	it	to	contain?

Lesson	5.01:	Object	Oriented	Programming

326

Robustness:	Is	this	model	sufficiently	flexible	for	everything	I	need	it	to	do?
Can	I	use	it	in	different	contexts	(this	isn’t	important	in	this	unit,	but	will	become
important	later.)

Simplicity:	Can	my	model	be	simpler?	Extra	complexity	can	lead	to	coding
mistakes	or	errors	down	the	road.	I	want	my	code	to	be	easy	for	other
programmers	to	read/interpret.

Introduction:	Syntax	Notes	[10-20	minutes]

1.	 Distribute	graphic	organizers	WS	5.1	to	the	students	that	need	extra	structure	for	their
notes.	Start	by	showing	students	the	difference	between	a	program	that	is	a	set	of
actions	(commands),	and	a	program	that	contains	data	and	behavior	(data	and
methods).

This	object	digits	is	a	(very	simple,	and	somewhat	boring)	model	of	a	collection	of
integers.	This	model	contains	state	(data)	and	actions	(methods):

int[]	digits	=	{1,2,3,4,5,6,7,8,9,10};										//	The	data	is	stored	in	the	

array.

System.out.println(Arrays.toString(digits));				//	The	method	dictates	actions

																																																//	to	be	done	with	the	data.

Depending	on	your	class’	culture	and	level	of	understanding,	you	might	consider	a	brief
side-discussion	on	other	ways	we	could	get	the	program	to	print	out	the	array.	Ask	for
students	to	volunteer	some	other	code,	and	ask	students	to	argue/debate	whether	it	is
easier	to	write	the	code	from	scratch	or	ask	the	array	to	format	itself	(as	above).

2.	 An	object	is	a	combination	of	data	AND	methods.	The	book	refers	to	these	as	state
(content,	or	data)	and	behavior	(methods,	or	what	is	to	be	done	with	the	data).

The	behavior	can	modify	or	report	the	data	contained	by	the	object.

The	book	refers	to	the	data	as	the	“state”	of	the	object

Ask	students	to	describe	how	we	use	the	word	“state”	in	daily	life,	and	ask	them	to
compare	to	how	you	use	“state”	in	computer	science.

Ask	students	to	explain	how	the	word	“behavior”	applies	to	an	object.

By	contrast,	this	is	a	program	that	is	not	an	object/model:

Lesson	5.01:	Object	Oriented	Programming

327

while	(guess	!=	number)	{

				System.out.println("Incorrect.");

				System.out.println("Your	guess?	");

				guess	=	console.nextInt();

				numGuesses++;

}

Ask	students	why	this	isn’t	an	object/model	of	something.	(This	program	only
contains	actions,	no	behavior.)

3.	 The	code	that	uses	the	objects	is	called	client	code.	You’d	never	create	a	model	of
something	(create	an	object)	if	you	weren’t	going	to	use	it	with	other	programs	(client
code).

To	pull	from	our	earlier	example,	what	sort	of	program/client	code	might	make	use
of	student1?	(An	attendance	program,	a	grade	records	program)

What	program	(client	code)	might	need	to	access	the	data	and	methods	(state	and
behavior)	stored	in	the	myDog	object?	(A	veterinarian’s	digital	medical	charts,	a
dog	show’s	registration	program)

4.	 Using	whichever	example	is	most	engaging	to	your	students,	have	them	write	3	objects
with	proper	syntax	as	a	Think-Pair-Share.	Before	you	list	the	objects,	have	a	brief
design	conversation	as	a	whole	group,	so	students	can	decide	what	data	and	methods
should	be	included	in	each	object.	Some	suggested	objects:

myDog,	teachersDog,	sistersDog
student1,	student2,	student3
forecastNY,	forecastAZ,	forecastOK

Ask	students	if	they	wrote	the	same	code	over	and	over	again,	how	long	it	took	them,	if
they	can	think	of	another	way	to	make	the	task	easier	(some	of	them	might	have	read
about	classes	the	night	before).

5.	 A	class	is	a	blueprint	(or	outline)	that	tells	Java	how	to	make	a	particular	set	of	objects.
We	could	save	ourselves	a	lot	of	time	by	writing	a	class	Student,	which	will	make	sure
that	every	student	object	has	<whatever	fields	your	students	decided	student	should
have>.

Each	object	is	called	an	instance	of	that	class.

The	object	myDog	is	an	instance	of	the	Dog	class.	So	is	the	object
teachersDog	and	sistersDog.	What	is	another	instance	of	the	Dog	class?	(Any
individual	dog	is	correct—categories	of	dog,	such	as	seeingEyeDog	are	not
objects,	but	probably	classes	in	a	hierarchy—more	on	that	later!)

Ask	students	to	give	instances	of	the	Student	and	Forecast	classes.

Lesson	5.01:	Object	Oriented	Programming

328

Finally,	ask	for	students	to	provide	examples	of	their	own	classes	and	instances.
Some	examples:

Class:		ClassroomChair	
Instances:	Student	1’s	Seat,	Student	2’s	seat,	etc.

Class:		Pens	
Instances:	My	pen,	your	pen,	the	pen	on	the	desk

If	you	use	these	examples,	walk	around	the	classroom,	physically	touching	or
picking	up	the	instances	of	each	class.

As	you	work	through	these	examples,	be	careful	not	to	generate	an	example	that
illustrates	a	superclass	with	classes.	This	will	be	coming	up	in	the	next	unit,	so	it’s
important	not	to	confuse	students.

If	a	student	gives	an	example	that	is	overly	general,	you	can	redirect	them	towards
a	more	specific	example:

Incorrect	Student	Example:	Class	=	Car,	Instances	=	Jetta,	Prius,	Model	T
Correction:	Class	=	Car,	Instances	=	myCar,	yourCar,	thatCarOverThere

A	class	contains	several	key	components:

Fields	—	which	outline	what	data	(state)	the	object	will	hold

Methods	—	which	determine	the	behavior	of	each	object

Constructors	—	code	that	initializes	each	object	as	its	being	constructed	with
the	new	keyword

A	class	uses	encapsulation	to	protect	the	object’s	data	from	outside	access	(by	the
client	code).	You	do	this	by	making	each	field	private.

If	you	need	additional	examples,	work	through	the	book	example	of	the	Point	Class,
driving	home	the	idea	that	a	class	can	contain	whatever	they	want/need.	If	your
students	are	easily	grasping	these	concepts,	have	the	students	help	you	create	a
boutique/bespoke	class	Pokémon.	The	idea	here	is	to	give	them	a	design	problem
that	they	can	work	through,	making	choices	about	content	and	behavior	that	result
in	a	model	of	the	Pokémon	game.

Activity	1:	Practice-It	[15	minutes]

1.	 Students	will	be	working	in	groups	for	much	of	the	week,	so	have	them	work
independently	today.	If	students	are	really	having	a	rough	time,	work	through	the	first
Practice-It	question	together	as	a	whole	group.

Lesson	5.01:	Object	Oriented	Programming

329

2.	 Have	students	read	through	the	Point	Class	example	before	moving	on	to	the	Practice	It
questions.

3.	 Have	students	log	in	to	Practice	It	to	complete	the	following	self-check	questions:

a.	whatIsOOP
b.	whatIsAnObject
c.	StringObject
d.	ReferenceMystery3
e.	CalculatorObject

4.	 If	more	25%	or	more	of	the	class	is	struggling,	return	to	whole	group	with	the	stipulation
that	students	who	get	it	may	continue	working	independently.

Activity	2:	Researching	For	a	Custom	Class	[5	minutes]

1.	 Ask	students	to	take	a	few	minutes	to	research	the	Pokémon	game	in	earnest.	An
ongoing	design	challenge	will	be	for	them	to	construct	a	model	of	the	Pokémon	game
that	resembles	the	one	they	play	at	home.	If	they	are	already	familiar	with	the	game,
they	should	visit	Bulbapedia	to	learn	how	some	of	the	stats	are	calculated.	If	they	are
not	familiar	with	the	game,	they	should	watch	game	examples	on	YouTube,	read	the
rules	and	steps	on	Nintendo’s	website,	or	navigate	through	the	intro	pages	on
Bulbapedia.	This	can	be	extended	as	a	homework	assignment.

If	your	students	have	trouble	reading,	direct	them	to	the	following	webpages	instead	of
having	them	search	at	their	own	discretion:

i.	 http://www.pokemon.com/us/parents-guide/	(Basic	overview	of	the	game)

ii.	 https://youtu.be/DlEbXH8eUTk?t=1m26s	(this	is	a	30	minute	YouTube	video	of
gameplay—students	should	either	watch	it	at	home	or	only	watch	the	first	5	-	10
minutes	in	class)

iii.	 http://www.pokemon.com/us/pokedex/	(types	of	Pokemon)

iv.	 http://tinyurl.com/no4mzic	(Pokemon	with	stats)

v.	 http://en.wikipedia.org/wiki/Gameplay_of_Pokémon	(Wikipedia	entry)

2.	 As	students	research,	have	them	jot	down	ideas	for	what	type	of	data	and	behaviors
they	would	want	to	include	in	a	Pokémon	class.	What	design	features	do	they	feel	are
most	important	to	their	model?	Encourage	students	to	justify	their	answers	to	each
other,	you,	and	the	class	at	large.

Lesson	5.01:	Object	Oriented	Programming

330

http://www.pokemon.com/us/parents-guide/
https://youtu.be/DlEbXH8eUTk?t=1m26s
http://www.pokemon.com/us/pokedex/
http://tinyurl.com/no4mzic
http://en.wikipedia.org/wiki/Gameplay_of_Pok%C3%A9mon

3.	 If	students	show	interest,	let	them	read	ahead	in	the	textbook	to	figure	out	exactly	what
fields,	methods,	and	constructors	they	might	use	in	the	next	class.	Ask	students	to
reflect	on	their	current	model	and	think	of	ways	they	could	improve/change	it.

Accommodation	and	Differentiation
If	you	have	students	who	are	speeding	through	this	lesson,	invite	them	to	create	a	mind	map
of	the	concepts	introduced	today	using	key	vocabulary	words.	If	the	mind	map	is	thorough,
give	the	student	materials	to	turn	the	map	into	a	large-format	poster	for	the	classroom.

For	students	struggling	with	the	vocabulary,	ask	them	to	bring	in	physical	objects	that	can	all
be	classified	as	the	same	type.	(Perhaps	they	bring	in	drink	bottles,	or	types	of	snacks,	or
different	writing	implements.)	Using	those	objects,	you	should	have	them	create	an	in-class
display	that	models	the	relationship	between	classes	and	instances	of	the	class.	Have
students	label	the	physical	objects	with:

Class	name
Object
Instance	of	[name	of	class]
Sample	code	or	pseudocode	(on	index	cards	or	pieces	of	paper)	for:

Fields
Constructors
Methods

If	students	need	additional	anchoring	for	the	“object”	concept,	ask	them	if	they	can	guess
what	object	they’ve	worked	with	before.	(String	objects,	Scanner	objects,	etc.)	Have	a	brief
discussion	where	you:

Ask	students	to	provide	examples	of	data	stored	in	String	objects	(Data	includes	the
characters	and	their	locations,	information	about	the	length	of	the	string.)

Ask	student	to	provide	examples	of	behavior	(methods)	associated	with	Strings.
(Methods	include	anything	used	in	the	.dot	notation,	such	as		s.length()	.)

If	you	need	additional	discussion,	ask	students	to	discuss	the	behavior	and	state	of	array
objects.

Teacher	Prior	CS	Knowledge
Up	to	this	point,	students	have	been	consumers	of	objects.	They	have	used	the		String	,
	Scanner	,	and		ArrayList		classes.	As	we	move	into	object	oriented	programming	concepts,
students	will	be	able	to	create	classes	and	objects.	This	is	like	being	able	to	read	a	language

Lesson	5.01:	Object	Oriented	Programming

331

to	being	able	to	write	a	language.	Both	require	some	knowledge	and	skill	in	addition	to	lots
of	practice.	The	knowledge	and	skill	are	related	for	reading	and	writing,	but	not	necessarily
the	same.

Misconceptions
Students	think		class		is	a	collection	of	objects,	rather	than	a	template	for	creating	objects.

Videos
BJP	8-1,	Defining	a	Class
http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c8-1

CSE	142,	Intro	Object	Oriented	Programming	(11:26–19:53)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=2071ef1c-2912-4b41-
8052-d327180ea215&start=686

CSE	142,	Class	vs	Object	(26:36–31:43)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=2071ef1c-2912-4b41-
8052-d327180ea215&start=686

Forum	discussion
Lesson	5.01	Object	Oriented	Programming	(TEALS	Discourse	account	required)

Lesson	5.01:	Object	Oriented	Programming

332

http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c8-1
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=2071ef1c-2912-4b41-8052-d327180ea215&start=686
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=2071ef1c-2912-4b41-8052-d327180ea215&start=686
http://forums.tealsk12.org/c/unit-5/5-01-object-oriented-programming

Lesson	5.02	—	Object	State	&	Behavior

Overview

Objectives	—	Students	will	be	able	to…

Describe	classes,	objects,	and	client	code.
Predict	the	output	of	the	code	that	uses	objects.

Assessments	—	Students	will…

Complete	WS	5.2	individually	or	in	pairs.

Homework	—	Students	will…

Read	BJP	8.3	up	to	“The	Keyword	this”
Complete	self-check	questions	#9-11,	13-16

Materials	&	Prep
Projector	and	computer
Whiteboard	and	markers
Classroom	copies	of	WS	5.2

You	should	read	the	introduction	on	the	Bulbepedia	website	so	you	understand	the	main
ideas	behind	the	Pokémon	game.	If	you	search	YouTube,	you	can	find	recorded	games	to
see	how	a	Pokémon	battle	starts,	progresses,	and	ends.

Pacing	Guide

Section Total	Time

Bell-work	and	attendance 5min

Introduction 15-30min

Student	practice:	WS	5.2 25min

Students	trade	work,	check,	and	turn	in 10min

Lesson	5.02:	Object	State	&	Behavior

333

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit5/WS%205.2.docx

Procedure
Yesterday	you	asked	students	to	do	some	research	on	what	fields,	constructors,	and
methods	would	be	appropriate	for	building	a	custom-made	Pokémon	class.	Solicit	students’
input	before	you	work	through	a	Pokémon	class	example.

Ask	students	what	they	think	a	Pokémon	class	should	include,	and	why.	Encourage	students
to	argue	for	or	against	certain	design	features	in	the	Pokémon	class.	Should	the	class
include	all	Pokémon	stats?	Are	there	any	behaviors	(methods)	you	think	all	instance	objects
should	have?	What	are	some	examples	of	instances	of	the	Pokémon	class?	(Any	individual
Pokémon	is	an	instance	of	the	Pokémon	class,	for	example	Pikachu,	Bulbasaur.)

Bell-work	and	Attendance	[5	minutes]

Introduction	[15-30	minutes]

1.	 Ask	students	to	review	their	notes	from	the	day	before,	reminding	you	what	the	main
components	of	a	class	are.	(Fields,	methods,	constructors,	and	encapsulation.)

The	syntax	for	declaring	a	field	is	the	same	as	the	syntax	for	declaring	normal
variables	(type	followed	by	semicolon).	If	your	students	are	feeling	confident,	invite
a	volunteer	up	to	declare	a	field	on	the	whiteboard	for	your	Pokémon	class.

Remind	students	that	fields	signify	that	EVERY	instance	object	of	the	class	should
have	that	variable	inside	it,	so	as	their	example,	they	should	declare	a	trait	that
every	instance	of	Pokémon	will	have.

Your	example	should	look	something	like	this:

public	class	Pokemon	{

				private	int	hp;							//	Pokémon	stats	include	hit	points,	or	"HP"

				private	int	attack;

Students	will	probably	start	volunteering	additional	examples	once	they	realize	that
stats	make	for	good	fields.	Some	other	fields	include:

				private	int	defense;

				private	int	specialAttack;

				private	int	specialDefense;

				private	int	speed;

Lesson	5.02:	Object	State	&	Behavior

334

For	the	sake	of	simplicity,	try	to	keep	students	to	2	or	3	fields	for	now.	Don’t	just
arbitrarily	declare	this;	encourage	students	to	think	about	how	we	use	classes	and
objects	as	models.	Ask	them	to	criticize	your	current	model.

Does	it	need	to	be	complex	yet?

If	we	opt	for	simplicity,	what	are	we	yielding	in	sufficiency/robustness?

If	students	agree	to	keep	it	simple	for	now,	remind	them	that	they	can	make	a
design	choice	to	increase	complexity	later.	Most	programmers	start	with	a
simpler	model	and	build	up	as	they	flesh	out	their	program.

If	students	need	additional	examples	for	appropriate	fields,	lead	students	through
the	following	examples	(having	them	add	as	much	of	the	code	as	possible).	Make
sure	that	students	can	justify	their	choices	in	fields	and	explain	why	they	would
include	some	data	and	not	others.	At	every	opportunity,	repeat	the	fact	that	they	are
using	data	to	model	the	real	world:

public	class	Student	{

				private	String	name;

				private	int				gradeLevel;

				private	double	gpa;

public	class	Dog	{

				private	String	breed;

				private	double	weightInKg;

public	class	Forecast	{

				private	double		windSpeed;

				private	String		windDirection;

				private	boolean	tornadoWarning;

2.	 Remind	students	that	in	the	previous	class	they	learned	that	objects	combine	both	state
(data)	and	behavior	(methods).	So	far	we’ve	created	fields	in	our	classes	that	state	what
data	will	be	stored	in	all	instance	objects.

What	would	be	a	good	method	to	include	in	all	instances	of	the	Student	class?
What	would	be	a	good	method	for	all	instances	of	the	Dog	class	to	have?
What	method	should	all	forecasts	have,	no	matter	what	area	you’re	forecasting	for?

3.	 Let’s	add	a	method	inside	the	object	that	will	report	information	about	the	data	stored	in
our	Pokémon	objects.	Because	this	method	is	being	written	within	the	object,	we	refer	to
it	as	an	instance	method	(it	is	not	in	client	code).

Pokémon	get	an	effort	ribbon	if	their	combined	stats	exceed	a	certain	value.	What
would	the	method	sumStats	look	like?

Lesson	5.02:	Object	State	&	Behavior

335

public	int	sumStats()	{

				return	hp	+	attack	+	defense	+	specialAttack	+	specialDefense	+	speed;

}

Since	this	method	gets	information	about	your	Pokémon	instance,	but	doesn’t
change	any	of	the	values,	what	do	you	call	this	type	of	method?	(Accessor)

Is	this	client	code?	(No,	it	is	part	of	the	Pokémon	class,	which	is	why	we	call	it	an
instance	method.)

4.	 Let’s	write	another	instance	method	that	will	let	us	change	the	state	(data	values)	stored
in	our	Pokémon	instance	objects.	In	the	game,	what	can	you	do	to	cause	your	stats	to
change?	(Win	battles,	consume	vitamins)

Pokémon	can	use	vitamins	to	boost	their	stats.	Here	are	some	example	vitamins
for	you	to	use	at	the	board:

hpUp:	+	points	to	HP
protein:	+	points	to	attack
iron:	+	points	to	defense
zinc:	+	points	to	specialDefense

In	keeping	with	our	earlier	example,	a	method	to	update	stats	with	vitamins	would
look	something	like	this:

public	void	consumeVitamin	(int	hpUp,	int	protein)	{

				hp	+=	hpUp;

				attack	+=	protein;

}

Students	may	want	to	add	other	vitamins.

5.	 Ask	students	if	they	can	deduce	the	syntax	rules	for	instance	methods	based	on	the	two
methods	we’ve	written	so	far:

public	<type>	<name>	(<type	<name>,	<type>	<name>	…)	{

				<statement>

				<statement>

				…

}

6.	 Since	we	know	that	all	instances	of	our	Pokémon	class	will	have	initial	values	to	their
stats,	we	could	create	a	constructor	to	initialize	all	of	our	values.

Lesson	5.02:	Object	State	&	Behavior

336

It	often	doesn’t	make	sense	to	have	Java	auto	initialize	our	stats	to	0,	so	we	build
our	own	constructor	that	requires	us	to	pass	initial	parameters.

Have	students	point	out	to	you	the	class,	fields,	and	constructor:

public	class	Pokemon	{

				private	int	hp;

				private	int	attack;

				public	Pokemon	(int	hitpoints,	int	a)	{											//	In	a	complete	versio

n	you

								hp	=	hitpoints;																															//	would	include	all	st

ats.

								attack	=	a;

				}

}

7.	 Now	that	you	used	the	constructor,	it’s	very	easy	to	create	objects!	What	would	an
instance	of	the	class	Pokémon	be?	(Any	Pokémon	type;	Pikachu,	Bulbasaur,	Squirtle,
etc.)

Pokemon	pikachu	=	new	Pokemon(70,	120);

If	students	are	getting	excited	about	this	example,	ask	them	to	look	up	types	and	their
typical	initial	values	(IVs)	for	hit	points	and	attack.	Let	them	practice	constructing	new
instances	of	the	Pokémon	class.

Ask	students	how	you	would	add	the	Pokémon	type	(electric,	ground,	rock,	etc.)	to
the	constructor.

Point	out	that	it	is	incorrect	to	construct	a	Pokémon	object	without	passing	initial
hitPoints	and	attack	parameters.	Since	you	wrote	a	custom-made	constructor	for
your	class,	Java	won’t	let	you	call	new	Pokémon()	anymore.	Instead,	your	code	just
won’t	compile.

Student	Practice:	WS	5.2	[25	minutes]

1.	 Remind	students	to	use	their	textbooks,	notes,	classroom	resources,	and	online	aids	to
help	them	answer	the	questions	on	WS	5.2.

2.	 Encourage	students	to	work	independently	until	the	last	10	minutes	of	class.

Students	trade	work,	check,	and	turn	in	[10	minutes]

Lesson	5.02:	Object	State	&	Behavior

337

Have	students	trade	and	error-check	each	other’s	papers.	Error-checking	partners	should
write	their	name	on	the	sheets	to	share	credit	for	the	work.

Accommodation	and	Differentiation
In	classes	where	reading	comprehension	is	an	issue,	have	students	work	in	pairs	today.	If
you	have	already	created	the	small	group	assignments	for	the	next	class	(see	LP	5.3),	you
can	assign	pairs	that	will	be	in	the	same	group	tomorrow.

If	you	have	students	who	are	speeding	through	this	lesson,	invite	them	to	create	a	diagram
showing	the	different	parts	of	a	class	and	instance	object	that	we	introduced	today.	If	the
diagram	is	correct	and	thorough,	give	the	student	materials	to	turn	the	diagram	into	a	large-
format	poster	for	the	classroom.

Teacher	Prior	CS	Knowledge
In	Novice	Java	Programmers’	Conceptions	of		Object		and		Class	,	and	Variation
Theory	by	Eckerdal	and	Thuné,	novice	students	view	objects	at	three	levels:

Objects:

Object	is	experienced	as	a	piece	of	code
As	above,	and	in	addition	object	is	experienced	as	something	that	is	active	in	the
program
As	above,	and	in	addition	object	is	experienced	as	a	model	of	some	real	world
phenomenon

Class:

Class	is	experienced	as	an	entity	in	the	program,	contributing	to	the	structure	of	the
code
As	above,	and	in	addition	class	is	experienced	as	a	description	of	properties	and
behavior	of	the	object
As	above,	and	in	addition	class	is	experienced	as	a	description	of	properties	and
behavior	of	the	object,	as	a	model	of	some	real	world	phenomenon

Software	developers	are	adept	at	seeing	objects	and	classes	as	models	for	both	real
and	abstract	constructs.

For	the	purposes	of	the	AP	test,	all	fields	are	private.	This	ensures	good	programming
practice	for	beginning	students	because	it	forces	the	use	of	accessors	methods:
accessors	and	mutators.	The	default	access	for	fields	when	no	access	modifier	is

Lesson	5.02:	Object	State	&	Behavior

338

specified	is	package	private.	This	means	all	classes	in	the	same	package	where	the
variable	is	defined	can	access	the	field.

Misconceptions
Students	add	static	to	class	method	definitions.	Now	that	Classes	have	been	introduced,
static	methods	that	are	tied	to	the	class	are	often	confused	with	non	static	methods.
Students	can	call	static	methods	without	creating	an	object,	however,	an	object	must	be
created	first	and	the	non-static	method	can	be	called.

Videos
BJP	8-2:	Defining	a	Class
http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c8-2

CSE	142,	Object	Oriented	Programming	State	(19:54–26:25)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=2071ef1c-2912-4b41-
8052-d327180ea215&start=686

CSE	142,	Object	Oriented	Programming	Behavior	(31:44–42:44)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=2071ef1c-2912-4b41-
8052-d327180ea215&start=1905

CSE	142,	Object	methods	(45:32–49:41)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=2071ef1c-2912-4b41-
8052-d327180ea215&start=2732

Forum	discussion
Lesson	5.02	Object	State	&	Behavior	(TEALS	Discourse	account	required)

Lesson	5.02:	Object	State	&	Behavior

339

http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c8-2
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=2071ef1c-2912-4b41-8052-d327180ea215&start=686
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=2071ef1c-2912-4b41-8052-d327180ea215&start=1905
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=2071ef1c-2912-4b41-8052-d327180ea215&start=2732
http://forums.tealsk12.org/c/unit-5/5-02-object-state-behavior

Lesson	5.03	—	Object	Initialization:
Constructors

Overview

Objectives	—	Students	will	be	able	to…

Describe	and	create	classes,	objects,	and	client	code.
Predict	the	output	of	the	code	that	uses	objects.

Assessments	—	Students	will…

Complete	Practice-It	questions

Homework	—	Students	will…

Read	BJP	8.4
Take	notes,	since	you	will	have	to	teach	a	mini-lesson	later	in	this	unit

Materials	&	Prep
Projector	and	computer	(if	you	are	able	to/opt	to	use	Eclipse	with	your	students)
Whiteboard	and	markers
Classroom	copies	of	WS	5.3.1,	WS	5.3.2
Student	small-group	assignments	(3-4	per	group)
2	dialogue	bubbles	(index	cards	or	sticky	notes)	for	each	group
Roll	of	tape/glue	stick	for	each	group
1	large,	1	medium,	and	2	small	sticky	notes	for	each	group
1	blank	sheet	of	paper	for	each	group

Most	teachers	will	either	already	have	these	materials	on	hand,	or	be	able	to	borrow	them
from	another	teacher	or	the	main	office.	You	should	try	to	give	your	classroom	teacher	at
least	1	week	notice	to	get	these	supplies	together.

Template	5.3.1	should	be	re-sized	to	ledger	or	legal	sized	paper,	if	it	is	available	in	your
school.	If	you	have	access	to	these	larger	pieces	of	paper,	encourage	students	to	write	their
code	largely	so	students	can	easily	read	the	examples	when	they	are	posted	around	the

Lesson	5.03:	Object	Initialization:	Constructors

340

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit5/WS%205.3.1.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit5/WS%205.3.2.docx

room.

Pacing	Guide

Section Total	Time

Bell-work	and	attendance 5min

Introduction 10min

Student	work 30min

Student	viewing	&	exit	ticket 10min

Procedure
This	lesson	includes	two	hooks:	First,	assemble	the	packets	of	materials	for	each	group
before	class,	and	lay	the	supplies	out	for	students	to	see/wonder	about.	Secondly,	introduce
today’s	lesson	with	a	hipster	flair	(if	you	can	pull	it	off)	by	emphasizing	the	artisanal,	custom-
made,	hand-crafted,	boutique	(etc.)	nature	of	the	classes	and	objects	they	will	be	creating
today.	The	sky	is	the	limit!	They	can	choose	any	class	of	objects	they	are	interested	in	for
their	group	work.

If	you	feel	additional	motivation	is	needed,	you	can	offer	a	prize	(TEALS	swag,	etc.)	to	the
most	creative,	complete,	and	correct	code	sample.	Offer	some	just-in-time	instruction,	then
let	the	students	work	together	with	the	guidance	of	WS	5.3.1

Bell-work	and	Attendance	[5	minutes]

Introduction	[10	minutes]

1.	 We	know	that	objects	use	constructors—you	might	remember	them	from	earlier	in	the
year	when	we	used	the	new	keyword	new	to	construct	a	new	array.

Start	your	constructor	with	the	keyword	public

Follow	with	the	class	name	and	whatever	parameters	you	think	you	should	include

This	is	a	design	question—which	parameters	do	you	think	should	be	auto-
initialized?	When	does	it	make	sense	to	proscribe	an	initial	state?

2.	 Work	through	the	examples	we’ve	reviewed	in	previous	classes.	What	constructor	look
like	for	the	Student	class?	The	Dog	class?	A	Forecast	class?

Lesson	5.03:	Object	Initialization:	Constructors

341

Give	the	first	example,	but	with	each	example	have	students	offer	increasing
amounts	of	the	code	themselves.

Ask	students	if	they	can	think	of	some	situations	where	they	might	want	to	leave
out	some	of	the	fields	from	the	constructor.

public	class	Student	{

				public	String	name;

				public	int				gradeLevel;

				public	double	gpa;

				public	Student	(String	n,	int	gl,	double	g)	{				//	It's	a	good	idea	to	u

se	a	single

								name	=	n;																																				//	letter	from	the	field

s	you	are

								gradeLevel	=	gl;																													//	initializing	in	the	c

onstructor.

								gpa	=	g;																																					//	It	keeps	things	simpl

e!

				}

public	class	Dog	{

				public	String	breed;

				public	double	weightInKg;

				public	Dog	(String	b,	double	w)	{				//	Students	may	ask	why	we	have	to	c

reate

								breed	=	b;																							//	these	additional	parameter	names.

	This

								weightInKg	=	w;																		//	plumbing	may	feel	clumsy,	but	it'

s	just

				}																																				//	a	step	we	have	to	accept	in	Java.

public	class	Forecast	{

				public	double		windSpeed;

				public	String		windDirection;

				public	boolean	tornadoWarning;

				public	Forecast	(double	ws,	String	wd)	{				//	Maybe	it	doesn't	make	sens

e	to	have

								windSpeed	=	ws;																									//	a	tornado	warning	in	the	f

orecast.

								windDirection	=	wd;																					//	This	is	a	design	choice!

				}

Lesson	5.03:	Object	Initialization:	Constructors

342

Because	you	have	built	a	custom	class	with	objects	that	you	designed,	you	can’t	rely	on
Java	to	auto-initialize	your	objects	to	zero	values	like	it	does	for	the	Array	class.	The
array	class	has	its	own	constructor	that	says	“set	all	initial	values	to	zero-equivalents.”
You	will	always	need	to	write	your	own	constructor	to	initialize	your	new	objects.

Student	Work	[30	minutes]

1.	 If	you	have	a	sample	(that	you	did	yourself,	or	that	you	saved	from	previous	students’
work),	hold	it	up	as	an	example	for	the	class,	but	do	not	let	students	look	too	closely.
The	idea	here	is	for	students	to	see	that	there	are	different	sheets	of	paper	and	steps	to
the	project;	you	don’t	want	them	looking	at	details	of	the	code.

2.	 Before	you	break	students	into	groups,	remind	the	class	that	they	should	read	through
all	of	the	instructions	first	so	they	get	a	good	idea	of	what	their	“boutique”	class	is
required	to	do/contain.

a.	They	should	spend	at	least	5	minutes	discussing	their	approach	to	program	design,
potential	strengths,	and	weaknesses	of	that	design,	then	come	to	consensus.

b.	Warn	students	that	you	will	ask	all	group	members	to	justify	their	design	choices.
(Follow	through	with	this,	walking	around	the	room	to	spot-check	students!)

3.	 Ask	students	what	they	should	do	if	they	have	a	question	or	get	hung	up	on	part	of	the
exercise.	(Check	their	notes,	check	the	book,	discuss	it	as	a	group,	and	if	all	that
doesn’t	work,	raise	their	hands	for	help.)

4.	 Break	students	into	their	assigned	teams	and	distribute	the	materials	(worksheets	5.3.1
and	5.3.2)	to	each	group.	Invite	them	to	start	on	reading	and	design	debate.

5.	 If	students	are	struggling	with	a	question,	you	can	refer	them	to	the	following	sections	in
their	book:

a.	Steps	1–2	—	The	first	half	of	section	8.2
b.	Steps	4–11	—	The	second	half	of	section	8.2
c.	Step	3	—	The	first	half	of	section	8.3
d.	Step	12	—	Section	8.1

Student	Viewing	&	Exit	Ticket	[10	minutes]

1.	 Have	students	put	out	their	code	on	desks,	or	pinned	to	the	wall,	and	have	the	entire
class	visit	each	Artisanal	Class/Object	set.

2.	 As	a	ticket	to	leave,	have	students	write	down	their	name,	the	name	of	another	group’s
class,	and	how	they	would	declare	an	object	according	to	that	groups’	constructor.

Lesson	5.03:	Object	Initialization:	Constructors

343

Accommodation	and	Differentiation
For	ELL	classes,	you	may	want	to	let	students	investigate	the	sample	finished	product	more
closely	to	give	them	cues	on	instructions	so	they	can	focus	on	the	coding	instead.	If	the	task
is	still	slowing	the	class	down	too	greatly,	read	the	directions	aloud	to	the	class,	and
demonstrate	the	step	required	(e.g.	selecting	the	sticky	note	and	sticking	it	to	the	template).

More	advanced	classes	will	whiz	through	this	activity	in	15	minutes	or	less.	If	this	happens	in
your	classroom,	encourage	students	to:

add	more	methods,	including	comments,	and	labeling	implicit	parameters

add	more	client	code,	including	comments	on	the	code	to	explain	what	it	does

add	other	classes	and	objects	(on	additional	templates)	and	create	a	model	that	shows
how	all	the	objects,	classes,	and	client	code	might	link	together	in	a	larger	program

reserve	some	time	to	complete	today’s	homework	and	move	on	to	Lesson	5.4.

Teacher	Prior	CS	Knowledge
Constructor	syntax.	Here	is	the	statement	for	creating	an	object	from	class	Phone:

Phone	myPhone	=	new	Phone();

Here’s	the	constructor	for	class	Phone:

public	class	Phone	{

				public	Phone	()	{

								//	Phone	constructor	code	goes	here

				}

}

If	you	break	down	the	creation	of	a	Phone	object:		new	Phone	()		the	right	hand	side
	Phone	()		is	simply	a	method	call.	The	method	that	is	called	is	the	constructor.	If	we
now	look	at	the	constructor	definition		public	Phone	()	,	it	matches	the	right	hand	side	of
the	creation	of	a	Phone	object.	The	only	difference	between	calling	a	constructor	when
creating	an	object	and	a	static	or	non-static	method	is	the	return	type	is	implied.	A
constructor	by	definition	returns	a	reference	to	an	object	in	this	example,	a	reference	to
a	Phone.	Since	the	constructor	by	definition	can	only	return	one	type,	it	was	removed
from	the	syntax	when	defining	a	constructor.

Lesson	5.03:	Object	Initialization:	Constructors

344

Misconceptions
Students	adding	void	return	type	to	constructor	definition.	Students	are	in	the	habit	of
specifying	a	return	type	for	methods.	The	one	case	where	the	return	type	is	not	need	is
when	defining	the	class’	constructor.	If	a	return	type	is	specified,	the	method	is	treated	as	a
method	of	the	class	and	not	as	a	constructor.	The	code	will	compile	but	the	constructor	will
never	be	called.

Videos
BJP	8-3,	Defining	a	Class
http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c8-3

CSE	142,	Using	vs	building	objects	(1:41–7:36)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=0ef2111f-c799-4da9-
b64a-2d876da98fb0&start=101

CSE	142,	toString()	(optional)	(7:37–23:33)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=0ef2111f-c799-4da9-
b64a-2d876da98fb0&start=457

CSE	142,	Constructors	(23:34–30:13)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=0ef2111f-c799-4da9-
b64a-2d876da98fb0&start=1414

CSE	142,	Multiple	Constructors	(optional)	(30:14–35:37)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=0ef2111f-c799-4da9-
b64a-2d876da98fb0&start=1814

Forum	discussion
Lesson	5.03	Object	Initialization:	Constructors	(TEALS	Discourse	account	required)

Lesson	5.03:	Object	Initialization:	Constructors

345

http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c8-3
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=0ef2111f-c799-4da9-b64a-2d876da98fb0&start=101
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=0ef2111f-c799-4da9-b64a-2d876da98fb0&start=457
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=0ef2111f-c799-4da9-b64a-2d876da98fb0&start=1414
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=0ef2111f-c799-4da9-b64a-2d876da98fb0&start=1814
http://forums.tealsk12.org/c/unit-5/5-03-object-initialization-constructors

Lesson	5.04	—	Encapsulation

Overview

Objectives	—	Students	will	be	able	to…

Explain	what	encapsulation/abstraction	are,	and	why	they	are	important	programming
strategies.

Assessments	—	Students	will…

Teach	a	mini-lesson	on	encapsulation/abstraction,	using	private	fields,	using	class
invariants,	and	changing	internal	implementations

Homework	—	Students	will…

Complete	a	quiz	at	the	end	of	Day	2
Complete	chapter	8	self-check	questions	17-21

Materials	&	Prep
Group	copies	of	WS	5.4
Assignments	for	4	student	groups
4	classroom	copies	of	the	textbook	(or	have	students	bring	books	to	class)
Copies	of	the	grading	rubric	on	the	overhead	or	printed	out	(optional)

You	will	need	to	circle	student	assignments	on	point	2	of	WS	5.4,	so	each	group	knows	what
topic	they	are	expected	to	teach.

Pacing	Guide:	Day	1

Lesson	5.04:	Encapsulation

346

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit5/WS%205.4.docx

Section Total	Time

Bell-work	and	attendance 5min

Introduction;	reviewing	the	assignment 10min

Student	preparation	of	lesson 30min

Student	practice 10min

Pacing	Guide:	Day	2

Section Total	Time

Bell-work	and	attendance 5min

Student	mini-lessons 35min

Quiz	using	student-generated	questions 15min

Procedure
Your	hook	for	today’s	lesson	is	to	turn	the	reins	over	to	students	immediately.	Have
instructions	printed	out	and	sitting	at	teamwork	stations	(or	on	student	desks).	Encourage
students	to	answer	their	own	questions	using	the	instruction	sheet	and	textbook.	Frequently
asked	questions	and	suggestions	for	student	groups	are	included	in	Accommodations	and
Differentiation.

Bell-work	and	Attendance	[5	minutes]

Introduction	&	Reviewing	the	Assignment	[10	minutes]

1.	 Prepare	students	by	telling	them	that	the	4	topics	covered	today	are	the	4	subsections
of	8.4,	the	reading	that	was	due	today.

2.	 Give	students	15	minutes	to	prepare	their	presentation	and	generate	quiz	questions	for
tomorrow’s	class.

a.	Use	a	timer	and	announce	time	at	10-	and	5-	minutes	remaining	so	students	can
pace	themselves.

b.	Answers	to	commonly	asked	questions,	and	tips	for	the	different	groups	may	be
found	below:

Lesson	5.04:	Encapsulation

347

ASSIGNMENT	FAQ

Encapsulation	&	Abstraction

Guidance	for	student	teachers

1.	 If	students	are	lacking	direction,	encourage	students	to	refer	to	the	textbook.	A	good
example	of	why	it’s	important	to	encapsulate	code	can	be	found	in	the	“Did	you	know”
blue	box	in	section	8.4.

2.	 A	good	“Tricky	Code	Cheat	Sheet”	tip	would	be	for	students	to	form	a	rule	their	peers
can	memorize	for	when	its’	appropriate	to	encapsulate	code.

Common	Questions/Answers

1.	 Why	can’t	we	just	ignore	code,	or	promise	not	to	modify	it	instead	of
encapsulating	it?

Most	large	programs	are	authored	by	many	people	over	the	course	of	months	or	years!
Sometimes	you	don’t	need	(or	want)	to	know	the	details	of	another	programming
segment—if	it	ain’t	broke,	don’t	fix	it.	To	keep	from	accidentally	changing	code,	it’s	best
practice	to	“protect”	it	by	encapsulation.

Private	Fields

Guidance	for	student	teachers

1.	 If	students	are	having	trouble	outlining	their	lesson,	suggest	that	they	start	with	the
fourth	complete	version	of	code	in	the	textbook.	If	they	use	the	textbook	example,	make
sure	they	point	out	which	program	is	the	client	code.

2.	 A	good	“Tricky	Code	Cheat	Sheet”	tip	would	be	the	convention	of	fields	at	the	top	of	the
class,	followed	by	constructors,	followed	by	methods.

Common	Questions/Answers

1.	 What	is	the	scope	of	private	fields?

Private	fields	are	visible	to	all	of	the	code	inside	the	Point	class,	including	the	instances
of	the	class.	Client	code	cannot	directly	refer	to	an	object’s	fields	if	you’ve	encapsulated
them	(marked	them	as	private).

2.	 But	what	if	we	still	want	client	code	to	have	to	read	some	of	the	fields?

Write	an	accessor	method	(a	“get”	method).	It	returns	a	copy	of	the	field’s	values	to	the
client,	so	the	client	can	see	the	values,	but	can’t	modify	them.

Lesson	5.04:	Encapsulation

348

Class	Invariants

Guidance	for	student	teachers

1.	 Remind	students	to	include	the	definition	of	a	class	invariant	for	students	to	record	in
their	notebooks.

2.	 Since	we	did	not	cover	the	this	keyword,	you	should	point	out	to	the	group	that	the	this
keyword	in	the	example	allows	the	code	to	directly	refer	to	the	implicit	parameter.	Since
this	might	be	confusing,	you	should	give	this	group	extra	assistance,	or	assign	your
most	advanced	group	this	lesson.

3.	 Using	division/modulus	60	to	convert	seconds	to	minutes	or	minutes	to	hours	as
outlined	in	the	book	is	a	useful	tip	for	the	“Tricky	Code	Cheat	Sheet.”

Common	Questions/Answers

1.	 How	is	enforcing	a	class	invariant	different	from	using	a	class	constant?

A	class	constant	will	always	stay	the	same	value;	it	does	not	ever	change.	A	class
invariant	is	a	fact	about	some	data	that	you	as	the	programmer	assert	will	always	be
true.	For	instance,	in	Pokemon,	each	stat	must	be	less	than	255—that	is	the	max	value
you	can	have	for	any	one	stat.	The	value	itself	may	go	up	or	down	depending	on	what
happens	to	your	Pokemon	in	the	game,	but	it	will	always	be	less	than	255.

2.	 Can	you	use	a	mutator	method	to	change	the	class	invariants?

No,	so	pick	and	choose	your	invariants	with	caution!

3.	 Skip	the	exceptions	example—exceptions	are	not	on	the	AP	exam	and	will	not	be
tested!

Changing	Internal	Implementations

Guidance	for	student	teachers

1.	 If	students	need	guidance	on	structuring	their	lesson,	encourage	them	to	coordinate
with	the	group	teaching	class	invariants,	since	they	will	be	modifying	the	code	taught	by
that	group.	They	might	also	want	to	refer	to	the	“Did	You	Know”	blue	box	in	the	section.

2.	 A	good	tip	for	the	Tricky	Code	Cheat	Sheet	could	be	the	simpler	time	span	code.

Common	Questions/Answers

1.	 How	come	changing	the	internal	design	does	affect	client	code?

Lesson	5.04:	Encapsulation

349

Since	you	encapsulated	your	class,	the	client	code	won’t	know	that	you	changed	the
internal	state.	The	only	way	your	changing	the	class	code	can	mess	with	a	client
program	is	if	you	change	the	constructors	or	method	headers.

Student	Preparation	of	Lesson	[30	minutes]

1.	 Give	each	group	7	minutes	to	present	their	topic	and	2	minutes	for	questions.

2.	 Encourage	students	to	ask	questions,	and	be	sure	to	ask	a	question	or	two	of	each
team	(depending	on	how	many	teams	you	have).

3.	 Use	the	grading	rubric	as	outlined	here:

3	pts. 2	pts. 1	pts. 0	pts.

Presentation
includes
definitions	and
an	example	with
proper	syntax.

Presentation
includes
definitions	or	an
example	with
proper	syntax.

Presentation
includes	definitions
or	an	example	with
proper	syntax	with
few	mistakes.

Presentation	includes
definitions	or	an
example	with	proper
syntax	with	many
mistakes.

Presentation
includes	a	non-
example	as
helpful	contrast.

Presentation
includes	a	non-
example	that	is
marginally
helpful.

Presentation
includes	a	non-
example	that	does
not	add	to
comprehension.

Presentation	includes	a
non-example	that	adds
confusion,	or
presentation	does	not
include	a	non-example.

Presentation
includes	a
helpful	tip	that	is
clearly
explained	and
concisely	stated.

Presentation
includes	a
helpful	tip	that	is
clearly
explained	or
concisely
stated.

Presentation
includes	a	helpful
tip	that	is	not	clearly
explained	and	may
include	a	small
error.

Presentation	does	not
include	a	helpful	tip	or
hint.

Accommodation	and	Differentiation
Circle	around	the	room	to	help	students	through	reading	the	text	in	the	textbook.	Make	sure
that	each	of	your	working	teams	is	properly	stratified	(rather	than	using	tiered	grouping).

If	students	are	speeding	along,	encourage	students	to	write	down	questions	to	pose	to	other
groups	during	mini-lessons.	If	a	group	finishes	early,	encourage	them	to	rehearse	lesson
delivery.

Teacher	Prior	CS	Knowledge

Lesson	5.04:	Encapsulation

350

Java	is	inconsistent	with	its	use	of	encapsulation	which	could	cause	confusion	with
beginning	students.	When	getting	the	length	of	a	String	a,	the	access	method		.length()		is
used.	However,	when	getting	the	length	of	an	array,	the	public,	though	final,	instance
variable		.length		is	used.

Misconceptions
Students	get	the	notion	that	because	of	data	encapsulation,	classes	cannot	be	fields	of
another	class.	Even	though	the	data	in	the	class	is	protected	from	being	modified	directly	by
other	classes,	the	class	itself	can	be	used	as	fields	in	other	classes.

Videos
BJP	8-4,	Encapsulation
http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c8-4

CSE	142,	Encapsulation	(35:38–45:58)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=0ef2111f-c799-4da9-
b64a-2d876da98fb0&start=2138

CSE	142,	“this”	notation	(optional)	(45:59–49:46)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=0ef2111f-c799-4da9-
b64a-2d876da98fb0&start=2759

Forum	discussion
Lesson	5.04	Encapsulation	(TEALS	Discourse	account	required)

Lesson	5.04:	Encapsulation

351

http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c8-4
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=0ef2111f-c799-4da9-b64a-2d876da98fb0&start=2138
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=0ef2111f-c799-4da9-b64a-2d876da98fb0&start=2759
http://forums.tealsk12.org/c/unit-5/5-04-encapsulation

Lesson	5.05	—	Finding	&	Fixing	Errors

Overview

Objectives	—	Students	will	be	able	to…

Find	errors	in	their	returned	homework	assignments.
Correct	their	code

Assessments	—	Students	will…

Re-submit	all	homework	assignments	with	corrected	answers.

Homework	—	Students	will…

Review	materials	for	the	Picture	lab	by:
Reviewing	all	the	blue	pages	at	the	end	of	Chapter	8

Submit	5	questions	for	review	in	class	tomorrow	using	electronic	survey
Update	all	summaries	in	notebook	for	the	upcoming	notebook	check

Materials	&	Prep
Any	student	homework	assignments	that	you	have	not	yet	returned
Student	self-help	system	(such	as	C2B4	or	student	pairing)
Electronic	survey	for	student	review	requests

The	homework	tonight	asks	students	to	submit	5	questions	for	review.	Create	an	electronic
survey	for	students	to	complete	with	6	text	fields,	one	for	name,	and	5	for	questions	they
have	about	Ch.	8	content.	Set	a	deadline	by	which	time	students	must	have	submitted	5
questions	from	Ch.8	that	they	would	like	to	see	reviewed	after	completion	of	the	Pictures	lab.
If	students	do	not	have	questions,	stipulate	that	they	still	have	to	submit	something	to
receive	credit,	even	if	it	is	only	questions	they	think	other	students	may	have.

Pacing	Guide

Lesson	5.05:	Finding	&	Fixing	Errors

352

Section Total	Time

Bell-work	and	attendance 5min

Introduction	and	homework	distribution 5min

Student	work 35min

Students	trade	work,	check,	and	submit 10min

Procedure
Today	we	continue	reinforcing	concepts	and	applying	the	tools,	procedures,	and	code	that
were	introduced	last	week.	Students	will	have	the	opportunity	to	correct	any	incorrect
homework	or	classwork	assignments.	If	students	did	not	have	time	to	finish	the	homework
from	yesterday,	you	may	allow	them	time	to	work	on	that	today.

Bell-work	and	Attendance	[5	minutes]

Introduction	and	Homework	Distribution	[5	minutes]

1.	 Return	student	homework	packets,	or	have	students	place	their	returned	homeworks	in
a	pile	on	their	desk.

2.	 Explain	to	students	that	they	have	the	opportunity	to	get	full	credit	on	their	homework
grades	by	correcting	them	now,	in	class.	Ask	students	for	suggestions/ideas	on	how	to
make	sure	they	don’t	miss	any	errors.

By	now	students	should	be	used	to	relying	on	their	error	checklist/algorithm.

Student	Work	[35	minutes]

Have	students	work	individually	to	correct	their	homework	grades.

Offer	time	checks	for	students	so	they	stay	on	task.

If	students	have	not	finished	homework	assignments,	allow	them	time	today	to	complete
these	assignments	to	turn	in	for	partial	credit.

Students	trade	work,	check,	and	turn	in	[10	minutes]

At	the	end	of	class,	have	students	trade	their	homework	assignments	to	evaluate	each
other’s	corrections	before	submission.

Lesson	5.05:	Finding	&	Fixing	Errors

353

Accommodation	and	Differentiation
In	ELL	classrooms,	pair	students	and	allow	them	to	work	together	to	correct	their	work.	If
you	noticed	a	particular	problem	was	difficult	for	the	majority	of	students,	read	the	question
aloud	and	help	students	work	through	it.

For	those	students	who	have	nothing	to	correct	(or	finish	very	early),	reward	them	with	silent
free	time,	or	allow	them	to	work	on	a	free-choice	programming	project.

Forum	discussion
Lesson	5.05	Finding	&	Fixing	Errors	(TEALS	Discourse	account	required)

Lesson	5.05:	Finding	&	Fixing	Errors

354

http://forums.tealsk12.org/c/unit-5/5-05-finding-fixing-errors

Lesson	5.06	—	Picture	Lab

Overview

Objectives	—	Students	will	be	able	to…

Complete	a	long-form	lab,	using	two-dimensional	arrays	of	objects,	array	traversing
algorithms,	program	analysis,	binary	numbers,	inheritance,	and	interfaces.

Assessments	—	Students	will…

Complete	the	Picture	Lab

Homework	—	Students	will…

A	list	of	homework	assignments	is	provided	below.

Materials	&	Prep
Projector	and	computer
Picture	Lab	Teacher’s	Guide
Classroom	copies	of	the	Picture	Lab	Student	Guide
Associated	Picture	Lab	&	Picture	Lab	Extension	Files
Digital	camera	(optional)
CD	(optional)
Egg	cartons	and	small	candies	(Skittles	or	M&Ms)	(optional)
Photo	negative	(optional)
Rectangular	mirror	(optional)

Read	through	the	Teacher,	Student,	and	Extension	guides	ahead	of	time	to	familiarize
yourself	with	the	parts	of	this	long-form	lab.	Using	the	guides,	complete	the	lab	on	your	own
to	spot	possible	challenges	for	your	students.	Upload	all	student	files	onto	each	computer
desktop	for	student	access.	Don’t	give	the	finalClasses	folder	to	your	students—it	contains
sample	answers!

NOTE:	If	your	students	enter	the	classroom	with	prior	programming	knowledge,	or	if	your
class	is	moving	through	the	AP	course	quickly	with	ease,	you	may	want	to	deliver	the	Text
Excel	lab	(included	in	Unit	5	materials)	instead.

Lesson	5.06:	Picture	Lab	(9	Days)

355

Pacing	Guide:	Day	1

Section Total	Time

Student	Activity	1	&	2 Full	class

Homework:
Summarize	your	notes	in	your	notebooks.
Notebook	checks	in	class	tomorrow!

TONIGHT

Pacing	Guide:	Day	2

Section Total	Time

Student	Activity	3	&	4 Full	class

Notebook	Checks During	class

Homework:
Outline	Chapter	8 TONIGHT

Pacing	Guide:	Day	3

Section Total	Time

Student	Activity	5 Full	class

Notebook	Checks During	class

Homework:
Read	and	highlight	Chapter	2	of	Barron’s	review	book.
Skip	“The		this		Keyword”.

TONIGHT

Pacing	Guide:	Day	4

Section Total	Time

Student	Activity	5	&	6 Full	class

Notebook	Checks During	class

Homework:
Take	the	Chapter	2	exam	in	Barron’s	review	book,	skipping	#20.
Grade	your	answers.

TONIGHT

Lesson	5.06:	Picture	Lab	(9	Days)

356

Pacing	Guide:	Day	5

Section Total	Time

Student	Activity	6,	continued Full	class

Check	Barron’s	review	books	for	highlighting	note-taking,
and	practice	test	completion	and	correction During	class

Homework:
Read	and	highlight	Chapter	5	of	Barron’s	review	book. TONIGHT

Pacing	Guide:	Day	6

Section Total	Time

Student	Activity	7 Full	class

Homework:
Read	BJP	8.5	and	answer	self-check	questions	29–30 TONIGHT

Pacing	Guide:	Day	7

Section Total	Time

Student	Activity	8 Full	class

Creating	a	collage During	class

Homework:
Finish	up	creating	a	collage TONIGHT

Pacing	Guide:	Day	8

Section Total	Time

Student	Activity	9 Full	class

Simple	edge	detection	algorithm	and	implementation During	class

Homework:
Continue	working	on	Simple	edge	detection. TONIGHT

Pacing	Guide:	Day	9

Lesson	5.06:	Picture	Lab	(9	Days)

357

Section Total	Time

Student	Activity	9,	continued Full	class

Finish	Simple	edge	detection During	class

Homework:
Submit	5	review	questions	on	the	electronic	survey. TONIGHT

About	Barron’s
Barron’s	is	an	AP	CS	A	review	book	that	some	school	provide	students.	If	your	school
doesn’t	provide	Barron’s	there	are	many	alternative	homework	assignments	that	can	be
found	at	http://codingbat.com/java	(no	classes)	or	practice-it.

Alternatively,	you	can	save	time	spent	on	the	lab	by	checking	activities	as	Homework.

Procedure
All	guides,	sample	code,	answer	code,	and	example	code	may	be	found	in	the	folder
“Milestone	2	Picture	Lab.”

1.	 To	help	students	start	the	lab	smoothly,	start	Activity	1	as	a	whole	group.

2.	 Encourage	students	to	use	their	Tricky	Code	Cheat	Sheets,	4	Commandments	of
Scope,	notebooks,	textbooks,	classroom	posters,	and	homework	assignments.

3.	 Offer	occasional	time-checks	to	help	keep	students	on	pace.

4.	 Grade	notebooks	and	review	books	in	between	helping	students	so	students	can	keep
notebooks	for	homework	and	studying	in	the	evenings.

Accommodation	and	Differentiation
In	ELL	classrooms,	read	all	directions	aloud	before	breaking	into	individual	practice,	and
allow	up	to	twice	the	amount	of	time	for	completion	of	the	lab.

To	save	time	on	the	rest	of	the	lab,	don’t	spend	too	much	time	reviewing	binary
numbers,	and	restrict	color	exploration	(Activity	2)	to	~20	minutes.

Use	the	tactile	exercises	as	suggested	on	page	6	of	the	Teacher’s	guide	(candy
exercise	and	exploring	the	digital	camera).

Lesson	5.06:	Picture	Lab	(9	Days)

358

http://codingbat.com/java

As	needed,	allow	students	to	pair	up	to	help	each	other	with	reading	comprehension	(but
remind	students	that	they	each	must	submit	their	own	code).	Each	day	that	you	begin	the
lab,	start	with	a	quick	survey	of	student	concerns	and	questions.

Adaptations	for	group	work	can	be	found	on	page	19	of	the	Teacher’s	guide.

Assessment	questions	have	been	relocated	to	the	practice	exam,	WS	5.7.

Forum	discussion
Lesson	5.06	Picture	Lab	(TEALS	Discourse	account	required)

Lesson	5.06:	Picture	Lab	(9	Days)

359

http://forums.tealsk12.org/c/unit-5/5-0601-0609-picture-lab

Lesson	5.07	—	Review

Overview

Objectives	—	Students	will	be	able	to…

Identify	weaknesses	in	their	Unit	5	knowledge.

Assessments	—	Students	will…

Create	a	personalized	list	of	review	topics	to	guide	tonight’s	study	session.

Homework	—	Students	will…

Study	for	tomorrow’s	test	using	targeted	review	list

Materials	&	Prep
Projector	and	computer
Whiteboard	and	marker
Results	from	electronic	survey	of	review	topics
Classroom	copies	of	the	practice	test	WS	5.7

Once	students	have	submitted	their	review	requests,	assemble	those	topics	into	categories
and	prepare	to	re-teach	the	topics	as	needed.	If	you	are	crunched	for	time,	hold	the	review
session	during	the	second	half	of	Day	12	of	the	Picture	Lab.

Pacing	Guide

Section Total	Time

Bell-work	and	attendance 5min

Review	of	student	questions 30min

Sample	test	review 15min

Check	student	study	lists 5min

Lesson	5.07:	Review

360

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit5/WS%205.7.docx

Procedure

Bell-work	and	Attendance	[5	minutes]

Review	of	Student	Questions	[30	minutes]

1.	 Clearly	indicate	that	you	expect	all	students	to	have	a	list	of	review	topics	to	study	this
evening.	Periodically	remind	students	that	this	list	will	be	checked	at	the	end	of	class.

2.	 Begin	with	a	review	of	student-submitted	questions	before	reviewing	the	practice
questions.

Sample	Test	Review	[15	minutes]

1.	 Begin	review	with	practice	test	WS	5.7.	Have	students	work	through	section	I	questions,
then	review	the	answers	as	a	class.

2.	 Give	students	time	to	complete	section	II	questions,	then	review	the	answers	as	a	class.

3.	 Finally,	work	through	the	various	review	topics,	prioritizing	questions	that	popped	up	the
most.

a.	Some	questions	you	may	address	while	working	through	the	sample	test.

b.	Be	ready	for	additional	questions	to	pop	up	as	you	go.	Save	yourself	the	work	and
use	old	homework	questions	and	student-generated	test	questions	as	examples	to	work
through.

4.	 Use	a	combination	of	group-solving	questions	on	the	whiteboard,	think-pair-share,	and
timed-response	as	review	strategies.

5.	 After	you’ve	completed	reviewing	an	idea,	remind	the	class	that	they	should	write	down
that	topic	if	they	feel	they	still	have	to	review	it	tonight.

Check	Student	Study	Lists	[5	minutes]

Spend	the	last	5	minutes	of	class	checking	each	student’s	review	topic	list.

Forum	discussion
Lesson	5.0	Unit	5	Review	(TEALS	Discourse	account	required)

Lesson	5.07:	Review

361

http://forums.tealsk12.org/c/unit-5/5-07-review

Lesson	5.07:	Review

362

Lesson	6.00	—	Test	Review	&	Reteach

Overview

Objectives	—	Students	will	be	able	to…

Re-learn	or	strengthen	content	knowledge	and	skills	from	Unit	5.

Assessments	—	Students	will…

Re-submit	test	answers	with	updated	corrections	for	partial	or	full	credit
Credit	depends	on	instructor	preference

Homework	—	Students	will…

Read	BJP	9.1
Correct	any	incorrect	test	answers	by	re-answering	on	a	separate	sheet	of	paper

To	get	back	credit,	they	must	justify	their	new	answers
Staple	new	answer	sheet	to	old	test	and	turn	in	tomorrow

Materials	&	Prep
Projector	and	computer
Whiteboard	and	markers
Corrected	student	tests
Student	grades	(posted	online,	emailed	to	students,	or	handed	back	on	paper	in	class)
Digital	copy	of	test	questions	for	projector

Pacing	Guide

Section Total	Time

Bell-work	and	attendance 5min

Class	discussion	(if	needed) 10min

Test	review	and	reteach 35min

Check	student	notes	and	return	tests 5min

Lesson	6.00:	Test	Review	&	Reteach

363

Procedure
Return	student	grades	before	class	begins	or	while	students	are	completing	the	bellwork.

Do	not	return	students’	tests	before	the	review	session,	since	you	want	to	motivate	students
to	pay	attention	to	the	entire	review,	taking	supplemental	notes	the	entire	time.

Bell-work	and	Attendance	[5	minutes]

Class	Discussion	(if	needed)	[10	minutes]

1.	 If	grades	are	low,	invite	the	class	to	a	discussion	of	what	can	be	improved.	Begin	with
student	complaints	and	suggestions	to	build	student	buy-in.	Ask	students:

how	they	felt	they	were	going	to	do	before	the	test
what	surprised	them	once	they	were	taking	the	test
what	they	felt	worked	in	the	first	unit	(lessons,	review	strategies,	assignments)
what	do	they	think	they	want	to	change	for	the	second	unit

2.	 Once	you	feel	that	a	dialogue	has	been	established,	validate	students’	feelings,	then
challenge	them	(e.g.	AP	courses	are	stressful,	but	this	is	good	practice	for	college,
where	the	pace	is	faster	and	professors	don’t	give	personalized	instruction).

Test	Review	and	Reteach	[30	minutes]

1.	 Walk	the	students	through	each	question	on	the	test,	glossing	over	questions	that
everyone	answered	correctly.

a.	You	can	ask	for	students	to	volunteer	answers,	or	call	on	students	randomly.	Make
sure	that	students	explain	their	logic	when	they	answer.	If	a	student	gives	an	incorrect
answer,	the	explanation	will	tell	you	what	you	need	to	re-teach	or	clarify.

b.	Do	not	skip	questions	that	everyone	answered	correctly,	but	do	not	spend	more	than
the	time	it	takes	to	read	the	question,	and	congratulate	students’	correct	answers.

2.	 Project	a	copy	of	each	question	as	you	review—this	will	help	students	recall	the
question/process	the	information.

3.	 Make	sure	that	students	are	taking	notes	during	the	re-teach,	reminding	students	that
for	homework,	they	will	have	an	opportunity	to	win	back	some	of	the	points	on	their
exam.

4.	 For	Section	II	questions,	select	a	sample	of	student	work	(with	any	identifying
information	obscured),	and	work	through	the	answer	together	as	a	class.

Lesson	6.00:	Test	Review	&	Reteach

364

Check	student	notes	and	return	tests	[5	minutes]

At	the	end	of	class,	check	student	notes,	and	return	the	tests	in	hard	copy	form	if	applicable.

Accommodation	and	Differentiation
Encourage	advanced	students	to	take	on	additional	programming	challenges.	One	easy	way
to	do	this	is	to	assign	Programming	Projects	from	the	blue	pages	at	the	end	of	each	Chapter.

If	you	have	a	few	students	that	are	struggling	with	the	class,	choose	these	students	to	create
your	classroom	posters	after	school	or	for	extra	credit.

Forum	discussion
Lesson	6.00	Test	Review	&	Reteach	(TEALS	Discourse	account	required)

Lesson	6.00:	Test	Review	&	Reteach

365

http://forums.tealsk12.org/c/unit-6/6-00-test-review-reteach

Lesson	6.01	—	Inheritance	Basics

Overview

Objectives	—	Students	will	be	able	to…

Correctly	define	inheritance.
Use	proper	syntax	to	extend	a	class.
Illustrate	is-a	relationships.
Properly	implement	constructors	of	derived	classes	using	super.

Assessments	—	Students	will…

Complete	a	Class	Hierarchy	poster	as	indicated	in	WS	6.1

Homework	—	Students	will…

Read	BJP	9.2	up	to	“DividendStock	Behavior.”
Collect	images	that	represent	instances	of	the	classes	created	for	in-class	poster
project.

Materials	&	Prep
Projector	and	computer	(if	you	are	able	to/opt	to	use	Eclipse	with	your	students)
Whiteboard	and	markers
Classroom	copies	of	WS	6.1	Start	class	poster,	Example	6.1
Pictures	of	Pokémon	(http://tinyurl.com/l6mybmr)	or	Pokémon	Cards
Student	pair	assignments
Art	supplies	for	each	group:

Poster	paper	or	cut	sheets	of	butcher	paper
Lined	paper	(at	least	3	sheets	per	group)
Markers
Glue	Sticks
Old	magazines,	flyers,	newspapers	to	cut	up	for	collage
Scissors
Yarn,	string,	or	embroidery	floss
Tape,	magnets,	or	tacks	to	hang	finished	work

Lesson	6.01:	Inheritance	Basics	(2	Days)

366

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit6/WS%206.1.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit6/Example%206.1.jpg
http://tinyurl.com/l6mybmr

Most	of	the	supplies	required	for	this	lesson	are	readily	available	in	high	schools.	If	the
school	doesn’t	have	poster	paper,	butcher	paper	works	well.	Other	supplies	may	be
available	to	borrow	from	the	Math,	Science,	or	Art	teachers.	To	get	an	idea	what	a	final
student	project	should	look	like,	check	out	the	picture	of	sample	student	work	“Example	6.1.”

Pacing	Guide:	Day	1

Section Total	Time

Bell-work	and	attendance 5min

Introduction 20min

Review	of	the	project 5min

Student	work 25min

Pacing	Guide:	Day	2

Section Total	Time

Student	work	&	teacher	check 20min

Peer	review 10min

Whole-group	discussion	and	reteach	if	needed 15min

Quiz 5min

Procedure
Hook	your	students	by	prominently	displaying	pictures	or	cards	of	Pokémon,	art	materials,
and	sample	work	(of	your	own	making,	or	saved	from	a	previous	year).	To	feature	the	most
engaging	student	examples,	look	for	work	that	has	many	instances	of	each	class,	and	uses
classes/objects	that	are	popular	with	your	class.	Invoke	an	air	of	mystery	and	don’t	offer	an
explanation	for	any	of	it.

Bell-work	and	Attendance	[5	minutes]

Introduction	[20	minutes]

Lesson	6.01:	Inheritance	Basics	(2	Days)

367

1.	 Have	a	class	discussion	about	the	Pokémon	picture/cards.	Ask	a	few	probing	questions
to	model	the	use	of	proper	programming	terminology	as	you	have	students	work
through	a	starter	assignment:

2.	 Ask	students	what	the	picture	is	of.	Do	they	know	the	names	or	types	of	the	Pokémon
featured?	Assign	a	quick	Think-Pair-Share	assignment	having	the	students	creating	the
instance	of	that	Pokémon.	Here’s	a	sample	prompt:

“Create	the	object	Pikachu.	Pikachu	should	have	a	type,	a	level,	and	2	methods.”

3.	 Show	a	few	more	cards/pictures.	Ask	students	to	do	another	Think-Pair-Share	with
another	prompt	to	create	another	instance	(your	prompt	should	have	whatever
Pokémon	you’ve	just	discussed):

“Create	the	object	Squirtle.	Squirtle	should	have	a	type,	a	level,	and	2	methods.”

4.	 Repeat	this	sequence	one	more	time;	showing	the	cards,	and	having	students	create	a
Pokémon	instance	object.	Your	students	should	be	getting	annoyed	at	having	to	write
the	same	things	over	and	over	again.

5.	 Ask	students	what	all	of	the	Pokémon	have	in	common.	Encourage	them	to	list
additional	traits	other	than	the	ones	you’ve	required	them	to	include	in	your	class
exercises.

6.	 Ask	students	if	they	can	think	of	a	way	to	create	new	Pokémon	objects	without	having	to
“reinvent	the	wheel”	each	time.	(They	might	be	able	to	sketch	out	an	answer	based	on
the	previous	night’s	readings.)

7.	 Students	might	suggest	subclasses	of	Pokémon,	in	which	case	you	should	point	out
that	they’re	creating	a	class	that	is	included	within	the	larger	classification	of	“all
Pokémon.”

The	individual	Pokémon	demonstrate	an	instance	of	the	Pokémon	class.	Each	subclass
of	Pokémon	is	a	specialized	version	of	the	parent	class	(or	superclass)	Pokémon.

Examples

An	electric	Pokémon	is	a	Pokémon.
A	computer	science	student	is	a	student.
A	math	teacher	is	a	teacher.
Soda	is	a	drink.

Have	students	describe	the	hierarchical	structure	of	each	relationship	above.	Electric
Pokémon	is	a	subclass,	Pokémon	is	the	superclass.	Student	is	the	superclass,
computer	science	student	is	the	subclass.	Drink	is	the	superclass,	soda	is	the	subclass.

Lesson	6.01:	Inheritance	Basics	(2	Days)

368

8.	 Confirm	understanding	by	asking	for	students	to	generate	some	examples.	In	each
case,	their	two	categories	exhibit	a	hierarchical	connection;	one	type	is	a	specialized
version	of	the	other.

9.	 Ask	students	to	define	an	inheritance	hierarchy	in	their	own	words.	Briefly	discuss	why
you	would	want	to	use	inheritance	in	programming.

An	inheritance	hierarchy	is	a	set	of	hierarchical	relationships	between	classes	of
objects.

Inheritance	is	a	programming	technique	that	allows	a	derived	class	to	extend	the
functionality	of	a	base	class,	inheriting	all	of	its	state	and	behavior.)

Superclass	is	the	parent	class	in	an	inheritance	relationship.

Subclass,	or	child	class	is	the	derived	class	in	an	inheritance	relationship.

10.	 Check	for	understanding	by	returning	to	the	examples	above,	and	asking	students	to
give	an	example	of	some	characteristics	(fields)	the	parent	class	would	have,	and	what
characteristics	students	would	add	to	the	specialized	subclasses.

Example:	Drinks	could	have	a	String	name	and	boolean	carbonated,	and	Soda	could
add	a	boolean	caffeinated.

11.	 The	class	header	for	a	subclass	that	extends	the	functionality	of	the	parent	class	looks
like	this:

public	class	Mammal	extends	Animal	{

public	class	Motorcycle	extends	Vehicle	{

public	class	Churro	extends	Pastry	{

Point	out	that	the	subclass	names	are	capitalized	by	convention,	and	that	you
always	use	the	extends	keyword.	Give	students	a	moment	to	think	of	a	few
hierarchical	relationships	in	a	think-pair-share,	and	ask	several	volunteers	to	come
to	the	front	of	the	room	to	demonstrate	the	correct	class	header.

12.	 For	the	following	example,	we	will	create	subclasses	that	extend	the	Drink	superclass
written	below.	If	your	students	need	additional	practice	building	classes	of	objects,	you
can	have	them	help	you	write	this	code.	In	more	advanced	classes,	you	may	just	reveal
this	class	as	a	fully-formed	starting	point	to	demonstrate	how	to	write	subclasses.

Lesson	6.01:	Inheritance	Basics	(2	Days)

369

public	class	Drink	{

			private	String		name;

			private	boolean	hasCarbonation;

			private	double		gramsOfSugar;

			private	double		ounces;

			public	Drink	(String	n,	Boolean	h,	double	g)	{

							name	=	n;

							hasCarbonation	=	h;

							gramsOfSugar	=	g;

							ounces	=	8;											//FDA	defines	a	serving	as	8	oz.

			}

			public	void	chug	(double	gulp)	{

							if	(ounces	<	gulp)	{

											throw	new	IllegalArgumentException	("Not	enough	"	+	name	+	"	left.");

							}	else	{

											System.out.println	("Glug,	glug,	glug!");

											ounces	-=gulp;

											System.out.println("You	have	"	+	ounces	+	"oz.	of	"	+	name	+	"	left.");

							}

			}

			public	String	getState()	{

							return	"liquid";

			}

			public	void	printLabel()	{

							System.out.println	("Enjoy	refreshing	"	+	name	+	"	!");

			}

}

13.	 Because	the	subclass	is	still	a	class,	you	should	add	fields	and	constructors,	as	you	do
with	any	class:

public	class	SugarFreeDrink	extends	Drink	{

			private	boolean	hasSweetener;

			private	double		caffeineContent;

The	additional	fields		hasSweetener		and		caffeineContent		characterize	all
	SugarFreeDrink			Drink		objects.	You	point	out	to	students	that		SugarFreeDrink		“is	a
kind	of		Drink	.”	Spot-check	student	understanding	by	asking	if	objects	of	the		Drink	
superclass	will	initialize	with	a	value	for		hasSweetener		or		caffeineContent	.	(No.)

14.	 	SugarFreeDrink		drinks	still	have	a	name,	a	boolean	carbonation	value,	sugar	content,
and	ounces,	but	we’ve	added	a	new	fields	specifying	whether	or	not	the	sugar	free
drinks	have	caffeine	and	artificial	sweeteners.	The	constructor	then	looks	like	this:

Lesson	6.01:	Inheritance	Basics	(2	Days)

370

public	SugarFreeDrink(String	name,	boolean	hasCarbonation,	boolean	h,	double	c)	{

The	fields	in	the	subclass’	constructor	now	contain	<type>	<superclass	parameter
values>	(highlighted),	except	for	the	new	fields,	which	still	have	a	formal	parameter
(in	this	case	h	and	c).

To	complete	the	constructor	so	it	can	access	the	fields	you	already	wrote	in	the
superclass,	you	use	the	keyword	super:

			//	must	be	first	line	after	constructor	header

			super(name,	hasCarbonation,	0.0);

Notice	that	we’ve	initialized	all	objects	in	the	SugarFreeDrink	class	to	have	0.0
grams	of	sugar.

Complete	the	constructor	with	your	subclass’	new	fields:

			hasSweetener	=	h;

			caffieneContent	=	c;

}

15.	 You	can	also	add	methods	that	only	apply	to	your	subclass,	just	the	way	you	normally
write	object	methods:

public	void	printWarningLabel()	{

			if	(hasSweetener)	{

							System.out.println("This	drink	is	not	safe	for	Phenylketonurics.");

			}	else	{

							System.out.println("This	drink	contains	no	artificial	sweeteners.");

			}

}

Review	of	the	Project	[5	minutes]

1.	 Briefly	review	the	assignment	with	your	students,	reading	the	directions	aloud	if	need
be.

2.	 If	you	haven’t	already	distributed	project	materials	at	this	point,	do	so	while	your
students	are	rearranging	into	partner	pairs.

Student	Work	[25	minutes]

Lesson	6.01:	Inheritance	Basics	(2	Days)

371

1.	 Encourage	students	to	take	5–10	minutes	on	Step	1.	They	should	review	all	steps	of	the
project	to	ensure	that	their	selection	of	classes	lends	itself	to	the	project	(e.g.	they
shouldn’t	pick	something	they	don’t	know	a	lot	about	because	they’ll	have	trouble
coming	up	with	fields	and	methods).

2.	 Offer	time	checks	every	10	minutes	so	students	can	stay	on	pace.	By	the	end	of	the	first
day,	they	should	have	gotten	to	step	6	or	7.	Visit	each	group	to	make	sure	that	they
haven’t	veered	off	course.

3.	 On	day	two,	check	student	work	and	help	students	display	their	work	around	the	room.

4.	 Check	that	the	flow-of-control	string	(see	WS	6.1	for	explanation)	correctly	shows	how	a
method	is	passed	through	subclasses	to	the	superclass.

5.	 Remind	students	to	take	notes	(Step	11	on	WS	6.1)	to	help	them	remember	talking
points	for	later	in	the	class.

6.	 As	a	whole	group,	ask	students	to	volunteer	what	they	really	liked	about	others’
projects.	Solicit	questions	and	critiques,	re-teaching	if	needed.

7.	 Administer	quiz	6.1	to	assess	student	understanding.

Accommodation	and	Differentiation
Encourage	advanced	students	to	add	additional	classes,	fields,	methods,	and	client	code.	If
students	still	have	time	to	spare,	encourage	them	to	read	on	method	overriding,	and	invite
them	to	add	that	code	as	well.	Students	can	attach	this	“extra	code”	using	paper	and
tape/glue	or	sticky	notes.

If	you	have	a	few	students	that	are	struggling	with	the	class,	give	them	your	starter	Drink
class	and	SugarFree	subclass,	and	let	them	build	off	of	your	examples.	You	can	print	out
your	starter	code	and	cut	it	into	pieces	and	shuffle	them	so	students	have	to	place	each	line
in	the	correct	location	(as	with	a	Parson	problem).

If	your	students	need	further	instruction	on	calling	a	superclass’	constructor,	go	through	a
few	more	examples	using	the	Drink	superclass,	or	classes	that	you	created	as	a	whole
group.	One	example	has	been	outlined	below:

Lesson	6.01:	Inheritance	Basics	(2	Days)

372

public	class	SugarDrink	extends	Drink	{

				private	boolean	isJuice;

				public	SugarDrink	(String	name,	boolean	hasCarbonation,	double	gramsOfSugar,

																							double	ounces,	boolean	iJ)	{

								super(name,	hasCarbonation,	gramsOfSugar,	ounces);

								isJuice	=	iJ;

				}

Teacher	Prior	CS	Knowledge
The	Object	Oriented	Programming	(OOP)	paradigm	could	be	thought	of	as	mimicking
the	real	world	where	objects	consists	of	data	that	define	them	and	actions	that	can	be
performed	on	the	data.	As	you	will	see,	the	process	of	learning	OOP	is	infinitely	more
complex.

The	pillars	of	Object	Oriented	Programming	(OOP):	inheritance,	encapsulation,	and
polymorphism.	In	a	nutshell	inheritance	allows	for	code	reuse	by	defining	methods	once
in	a	superclass,	encapsulation	provides	data	security	by	hiding	data	implementation
from	the	user	and	only	allowing	methods	in	the	class	to	modify	the	data,	and
polymorphism	offers	flexibility	to	the	designer	by	way	of	methods	defined	in	many	forms.

Misconceptions
Students’	use	of	“inheritance”	prior	to	computer	science	are	in	the	context	of	inheritance
from	an	ancestor	and	genetic	inheritance	of	traits.	However,	in	computer	science,
inheritance	is	used	for	classification	where	the	class	that	inherits	(extends)	from	a	more
general	class	(super	class).	Neither	of	the	students’	prior	knowledge	and	use	of	inheritance
is	an	accurate	representation	of	Java’s	class	structure.

Common	Mistakes
Object	oriented	concepts	common	mistakes:
http://interactivepython.org/runestone/static/JavaReview/OOBasics/ooMistakes.html

Video
BJP	9-1,	Inheritance:	Interacting	with	the	Superclass
http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c9-1

Lesson	6.01:	Inheritance	Basics	(2	Days)

373

http://interactivepython.org/runestone/static/JavaReview/OOBasics/ooMistakes.html
http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c9-1

CS	Homework	Bytes,	Inheritance,	with	Zach
https://www.youtube.com/watch?v=Alv2ApK_jdo

CSE	142,	Inheritance	(23:28–35:06)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=8a0a0287-877b-42df-
99fc-e9f551929bef&start=1408

Forum	discussion
Lesson	6.01	Inheritance	Basics	(TEALS	Discourse	account	required)

Lesson	6.01:	Inheritance	Basics	(2	Days)

374

https://www.youtube.com/watch?v=Alv2ApK_jdo
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=8a0a0287-877b-42df-99fc-e9f551929bef&start=1408
http://forums.tealsk12.org/c/unit-6/6-0101-0102-inheritance-basics

Lesson	6.02	—	Overriding	Methods	&
Accessing	Inherited	Code

Overview

Objectives	—	Students	will	be	able	to…

Replace	superclass	behavior	by	writing	overriding	methods	in	the	subclass.
Write	subclass	methods	that	access	superclass	methods.

Assessments	—	Students	will…

Add	code	to	their	Class	Posters	from	the	previous	lesson.

Homework	—	Students	will…

Read	the	rest	of	BJP	9.2	starting	from	“The	Object	Class.”

Materials	&	Prep
Projector	and	computer
Whiteboard	and	markers
Classroom	copies	of	WS	6.2
Class	posters	from	6.1
Art	supplies	for	each	group:

Markers
Poster	paper	(alternatively	printer	paper	and	tape)
Tape,	magnets,	or	tacks	to	hang	finished	work

Pacing	Guide

Lesson	6.02:	Overriding	Methods	&	Accessing	Inherited	Code

375

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit6/WS%206.2.docx

Section Total	Time

Bell-work	and	attendance 5min

Introduction	&	review	of	the	project 10min

Student	work 15min

Peer	review 10min

Whole-group	discussion/critique 10min

Procedure
Hook	your	students	by	prominently	displaying	art	materials,	and	sample	work	(of	your	own
making,	or	saved	from	a	previous	year).	To	feature	the	most	engaging	student	examples,
look	for	work	that	has	a	particularly	complex	or	impressive	flow-of-control	pattern	(see	WS.
6.2	for	explanation).	If	you	have	the	time,	this	would	be	a	great	opportunity	to	display	some
complex	code	for	students	to	examine	on	their	own	time.	The	more	intricate	the	string
pattern	on	the	poster,	the	more	intriguing	the	sample	will	appear.

Bell-work	and	Attendance	[5	minutes]

Introduction	&	Review	of	the	Project	[10	minutes]

1.	 Inheritance	makes	it	convenient	to	reuse	code	between	classes.	However,	sometimes
we’ll	want	to	specialize	code	in	a	subclass,	or	ignore	a	method	that	doesn’t	apply.	Ask
students	for	examples	when	this	might	be	the	case.	If	they’re	having	trouble	thinking	of
concrete	examples,	ask	them	to	think	of	an	example	from	their	own	class	hierarchy	that
they	created	in	the	previous	lesson.	Some	examples	to	get	the	class	started:

Subclass	Mammal	might	have	a	special	case	of	Animal	superclass	method
feedYoung	(because	they	lactate).

Subclass	HotDrink	might	use	a	different	method	chug	from	the	Drink	superclass
(maybe	the	method	involves	sipping	or	burning	your	tongue).

2.	 Replacing	superclass	behavior	by	writing	a	new	version	of	the	methods	in	the	subclass
is	called	overriding.	To	override	a	method,	write	the	method	you	want	to	replace	in	the
subclass!	No	special	syntax	is	required!

Building	on	our	Drink	example	from	the	last	lesson,	we	can	write	our	own	chug
method	for	subclass	SugarFreeDrink:

Lesson	6.02:	Overriding	Methods	&	Accessing	Inherited	Code

376

public	void	chug(double	gulp)	{

				System.out.println(“Yuck,	this	tastes	terrible!”);

}

Compare	this	to	the	Drink	superclass	method	chug,	which	is	reproduced	here	for
convenience:

public	void	chug	(double	gulp)	{				//	Superclass	Drink	method

				if	(ounces	<	gulp)	{

								throw	new	IllegalArgumentException();

				}	else	{

								System.out.println("Glug,	glug,	glug!");

								ounces	-=gulp;

								System.out.println("You	have	"	+	ounces	+	"oz.	of	drink	left.");

				}

}

3.	 Have	students	point	out	the	differences	between	the	two	methods,	predict	the	new
output,	and	offer	additional	or	alternative	changes	to	the	overridden	SugarFreeDrink
chug	method.

Make	sure	that	they	(or	you)	point	out	that	the	number	of	ounces	in	the	drink	will
NOT	be	updated	in	the	overridden	method	as	it	stands.

4.	 It	would	be	a	lot	of	extra	work	to	re-write	the	rest	of	the	glug	method	if	all	you	had
wanted	to	do	was	add	an	extra	println	statement	that	we	put	in	the	overridden	method.
Fortunately,	there	is	a	way	to	access	that	method	to	put	it	back	into	our	new,	overridden
method	(highlighted	below):

public	void	chug	(double	gulp)	{

				System.out.println("Yuck,	this	tastes	terrible!");

				super.chug(gulp);

}

This	method	now	outputs	“Yuck,	this	tastes	terrible!”,	updates	the	number	of
ounces	to	reflect	the	amount	you	drank,	throws	an	exception	if	you	don’t	have	any
ounces,	and	outputs	the	number	of	ounces	left	in	the	drink.

Ask	students	why	it’s	valid	to	call	the	overridden	method	chug,	and	reference	the
superclass	method	chug	by	the	same	name.	(The	superclass	method	is	accessed
using	dot	notation,	which	tells	Java	where	to	direct	the	flow	of	control.)

5.	 What	if	we	want	to	access	other	information	directly	from	the	Drink	class?	Remember,
our	drink	class	had	a	fields	for	name,	hasCarbonation,	gramsOfSugar,	and	ounces,	but
they’re	all	private	because	we	were	smart	and	remembered	to	encapsulate	them.

Lesson	6.02:	Overriding	Methods	&	Accessing	Inherited	Code

377

If	we	wanted	to	write	a	method	in	our	SugarFreeDrink	subclass	that	accesses	the
data	contained	in	name,	we	would	have	to	add	a	get	method	first	in	the	Superclass
Drink:

public	double	getName()	{				//	Written	in	superclass	Drink.

				return	name;

}

This	makes	a	copy	of	name	that	is	public,	and	can	be	accessed	outside	of	the	Drink
class.	Now	we	can	go	ahead	and	write	our	subclass	method	using	the	accessor
(highlighted	below):

public	void	advertising()	{

				System.out.println	(

								"Avoid	the	extra	calories	by	drinking	delicious	"	+	getName()	+	"ever

y	day!!"

);

}

6.	 Have	students	offer	additional	examples	using	the	Drink	superclass,	or	using	examples
from	their	own	class	hierarchy.

7.	 Complete	the	introduction	by	asking	students	to	explain	what	the	difference	is	between
overriding	and	overloading	methods.	(Overloading	methods	is	when	one	class	contains
multiple	methods	with	the	same	name,	but	a	different	number	of	parameters—
sometimes	called	the	parameter	signature.)

Student	Work	[15	minutes]

1.	 Briefly	review	WS	6.2	with	your	students,	reading	the	directions	aloud	if	need	be.

2.	 If	you	haven’t	already	distributed	project	materials	at	this	point,	do	so	while	your
students	are	rearranging	into	partner	pairs.

3.	 Encourage	students	to	take	5	–	10	minutes	on	Step	1.	They	should	review	all	steps	of
the	project	to	ensure	that	their	additional	methods	make	sense.

Announce	that	you’ll	offer	extra	credit	to	funny	or	creative	code	(if	that	fits	in	with	your
teaching	style).

4.	 Offer	time	checks	so	students	can	stay	on	pace.	Before	you	allow	students	to	begin	the
peer	review	tour	of	others’	work,	remind	them	to	take	notes	on	their	feedback	so	they
will	be	able	to	contribute	to	the	group	critique/discussion	at	the	end	of	class.

Lesson	6.02:	Overriding	Methods	&	Accessing	Inherited	Code

378

Peer	Review	[10	minutes]

Allow	students	10	minutes	to	tour	each	other’s	work	and	offer	feedback.

Whole-group	Discussion/Critique	[10	minutes]

If	possible,	rearrange	student	seats	into	a	circle	for	the	critique	to	encourage	informal
discussion.

As	a	whole	group,	ask	students	to	volunteer	what	they	really	liked	about	others’
projects.

Solicit	questions	and	critiques,	and	re-teach	if	needed.

Award	classroom	participation	points	to	all	students	who	contribute	to	the	discussion.

Accommodation	and	Differentiation
Encourage	advanced	students	to	add	additional	classes,	fields,	methods,	and	client	code.	If
students	still	have	time	to	spare,	encourage	them	to	increase	code	complexity,	add
additional	levels	to	the	class	hierarchy,	or	help	their	peers.

If	you	have	a	few	students	that	are	struggling	with	the	assignment,	allow	them	to	work	in
groups	of	4,	each	pair	helping	the	other	with	their	code.	If	students	need	additional	guidance,
have	students	complete	the	worksheet	as	a	series	of	think-pair-shares,	where	you	return	to
whole	group	to	share	and	discuss	answers	before	moving	on	to	the	next	step.	Teaching	the
class	this	way	will	roughly	double	the	time	required	to	complete	the	exercise.

Misconceptions
When	first	learning	polymorphism,	students	learn	method	override	before	method	overload.
However,	in	order	to	successfully	override	a	method,	the	subclass	method	must	have	the
same	method	signature	as	the	superclass,	otherwise	the	method	will	be	overloaded.	The
code	must	match	the	method	parameters	and	return	type	and	the	methods	public,	they
cannot	be	private	or	static.	When	helping	students	debug	their	code	where	the	overridden
method	is	not	behaving	as	anticipated,	asking	the	student	if	the	method	signatures	match
can	help	find	the	error	on	their	own.

Video

Lesson	6.02:	Overriding	Methods	&	Accessing	Inherited	Code

379

BJP	9-2,	Polymorphism
http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c9-2

CSE	142,	Polymorphism	(35:07–49:57)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=8a0a0287-877b-42df-
99fc-e9f551929bef&start=2107

Forum	discussion
Lesson	6.02	Overriding	Methods	&	Accessing	Inherited	Code	(TEALS	Discourse	account
required)

Lesson	6.02:	Overriding	Methods	&	Accessing	Inherited	Code

380

http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c9-2
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=8a0a0287-877b-42df-99fc-e9f551929bef&start=2107
http://forums.tealsk12.org/c/unit-6/6-02-overriding-methods-accessing-inherited-code

Lesson	6.03	—	Interacting	with	the	Object
Superclass

Overview

Objectives	—	Students	will	be	able	to…

Replace	superclass	behavior	by	writing	overriding	methods	in	the	subclass.
Write	subclass	methods	that	access	superclass	methods.

Assessments	—	Students	will…

Complete	Practice-It	questions
Complete	a	worksheet

Homework	—	Students	will…

Read	BJP	9.3	up	to	“Interpreting	Inheritance	Code.”

Materials	&	Prep
Projector	and	computer
Whiteboard	and	markers
Classroom	copies	of	WS	6.3,	Poster	6.3
Poster	6.3
Empty	&	washed,	or	non-refrigerated,	drink	bottles,	with	labels	affixed	(optional)

Poster	6.3	is	set	to	print	a	movie-sized	poster	of	15”	x	20”.	If	you	do	not	want	to	print	a
poster	this	size,	access	the	.pptx	version	of	the	poster,	and	reset	the	page	size	to	legal,
ledger,	or	whatever	larger-format	paper	you	have	available	to	you.	Note:	Some	fonts	on	this
poster	print	incredibly	small.

Arrange	the	drink	bottles	in	a	space	where	students	can	pick	them	up	and	look	at	them	if
need	be.	Encourage	students	to	look	at	the	bottles	to	get	ideas	for	fields	they	can	use	in
their	Drink	subclasses.

Pacing	Guide

Lesson	6.03:	Interacting	with	the	Object	Superclass

381

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit6/WS%206.3.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit6/Poster%206.3.pptx

Section Total	Time

Bell-work	and	attendance 5min

Review	of	the	project 10min

Student	practice:	Practice-It 15min

Student	practice:	WS	6.3 25min

Procedure
Most	of	student	practice	today	is	a	review	and	further	integration	of	the	concepts	that	were
introduced	since	the	beginning	of	this	unit.	The	only	new	concept	being	drilled	today	is	the
equals	method.

Bell-work	and	Attendance	[5	minutes]

Review	of	the	Project	[10	minutes]

1.	 All	classes	are	subclasses	of	the	Object	class.	Whether	you	write	extends	in	the	header
or	not,	all	classes	inherit	the	Object	class.	It	is	built	into	Java	this	way,	so	you	never
have	to	explicitly	write	extends	Object	in	a	class	header.

This	means	that	all	code	inherits	some	generalized	methods	that	come
automatically	with	the	Object	class.

2.	 The	AP	exam	covers	toString	and	equals	methods	only.

Ask	students	if	they	remember	what	toString	method	does.	(It	gives	the	class	name
followed	by	a	location	in	memory,	which	isn’t	very	helpful,	so	we	always	create	our
own	toString	methods	when	we	create	a	class.)

Ask	students	if	they	remember	why	we	can’t	just	use	==	to	test	for	equality	between
objects.

3.	 The	==	operator	tests	whether	two	objects	have	the	same	identity,	if	they	refer	to	the
same	object,	not	whether	the	two	objects	are	in	the	same	state.

Lesson	6.03:	Interacting	with	the	Object	Superclass

382

String	z	=	"z";

String	a	=	z	+	z;

String	b	=	"zz";

a	==	b;									//	Evaluates	to	false	because	a	and	b	refer	to	different	Strings

String	c	=	b;

c	==	b;									//	Evaluates	to	true	because	c	and	b	refer	to	the	same	String

4.	 The	default	equals	method	(that	comes	with	your	Object	superclass)	does	the	same
thing	as	the		==		operator.	(Since	the	equals	method	comes	from	the	Object	superclass,
it	interprets	its	input	parameter	as	an	object.)	But	for	Strings,	the	equals	method	does
something	smarter:

a.equals(b);				//	Evaluates	to	true	because	the	content	of	a	and	b	are	the	same	"

zz"

c.equals(b);				//	Evaluates	to	true	because	c	and	b	refer	to	the	same	String

To	rewrite	an	equals	method	that	compares	object	state	(to	override	the	Object
version	of	the	equals	method),	you	need	to	cast	the	object	in	order	to	let	Java	know
that	the	objects	really	can	be	compared.

To	test	if	two	Drink	objects	have	the	same	name	and	serving	size,	you	would	write
an	equals	method	that	looks	like	this:

public	boolean	equals(Object	o)	{

				Drink	other	=	(Drink)	o;

				return	name.equals(other.name)	&&	(ounces	==	other.ounces);

}

Student	Practice:	Practice-It	[15	minutes]

1.	 Have	students	work	individually	or	in	pairs	to	complete	the	following	Practice-It
questions:

a.	subclassSyntax
b.	inheritanceVariableSyntax
c.	CarTruck
d.	CarTruck2
e.	MonsterTruck

Student	Practice:	WS	6.3	[25	minutes]

Lesson	6.03:	Interacting	with	the	Object	Superclass

383

Once	students	have	completed	these	exercises,	distribute	worksheet	6.3.

Read	through	the	questions	aloud,	if	needed.

If	you	are	having	the	students	work	in	Eclipse,	be	sure	to	review	your	procedure	for
submitting	work	electronically	before	students	begin.

Encourage	students	to	explore	the	drink	bottles	to	get	ideas	for	fields	they	can	use	in
their	Drink	subclasses.

Accommodation	and	Differentiation
At	this	point	of	the	course,	introducing	TextExcel	may	be	beneficial.	Although	the	students
don’t	have	the	required	knowledge	to	complete	the	project	(yet),	TextExcel	and	can	be	useful
when	explaining	polymorphism	in	the	following	lesson	because	of	how	cells	are	displayed.	If
you	do	decide	to	go	this	route,	it’s	a	good	idea	to	give	your	class	at	least	a	half-day	to	work
on	TextExcel	to	get	a	better	understanding	of	the	prompt	and	where	they	get	stuck	in	the
project.

Encourage	advanced	students	to	add	additional	classes,	fields,	methods,	and	client	code.	If
students	still	have	time	to	spare,	encourage	them	to	increase	code	complexity,	add
additional	levels	to	the	class	hierarchy,	or	help	their	peers.

If	you	have	a	few	students	that	are	struggling	with	the	assignment,	allow	them	to	work	in
groups	of	4,	each	pair	helping	the	other	with	their	code.	If	students	need	additional	guidance,
have	students	complete	the	worksheet	as	a	series	of	think-pair-shares,	where	you	return	to
whole	group	to	share	and	discuss	answers	before	moving	on	to	the	next	step.	Teaching	the
class	this	way	will	roughly	double	the	time	required	to	complete	the	exercise.

Misconceptions
Students	often	have	confusion	on	the	difference	between	overriding	vs	overloading
methods.	The	following	is	a	chart	of	the	differences:

Lesson	6.03:	Interacting	with	the	Object	Superclass

384

Overriding
Method	with	same	name,

parameters,	and	return	type

Overload
Methods	with	same	name	but
parameters	and/or	return	type

Method
Signature Same Different

Class
hierarchy Subclass	overrides	superclass Overloaded	method	can	exist

anywhere	in	class	hierarchy

Behavior Change	behavior	of	superclass
method Multiple	behavior

Execution Run	Time Compile	Time

Video
CSE	143,	Interacting	with	Objects	(2:46–30:39)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=ed2ec8fa-511a-43fe-
9c51-7929dc4f10d8&start=166

CSE	143,	Interacting	walkthrough	(30:40–40:10)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=ed2ec8fa-511a-43fe-
9c51-7929dc4f10d8&start=1840

Forum	discussion
Lesson	6.03	Interacting	with	the	Object	Superclass	(TEALS	Discourse	account	required)

Lesson	6.03:	Interacting	with	the	Object	Superclass

385

https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=ed2ec8fa-511a-43fe-9c51-7929dc4f10d8&start=166
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=ed2ec8fa-511a-43fe-9c51-7929dc4f10d8&start=1840
http://forums.tealsk12.org/c/unit-6/6-03-interacting-with-the-object-superclass

Lesson	6.04	—	Polymorphism

Overview

Objectives	—	Students	will	be	able	to…

Define	polymorphism.
Trace	the	execution	of	methods	through	a	class	hierarchy	and	predict	output.

Assessments	—	Students	will…

Complete	a	Tracing	Inheritance	guide
Complete	WS	6.4

Homework	—	Students	will…

Read	BJP	9.4	“Is-a	Versus	Has-a	Relationships.”
Complete	self-check	questions	#18,	20

Materials	&	Prep
Projector	and	computer
Whiteboard	and	markers
Classroom	copies	of	WS	6.4.1
Tracing	Inheritance	Guide	WS	6.4.2
Class	hierarchies	and	client	code	from	Section	9.3	(on	board	or	projector)

The	Round	Robin	worksheet	is	11	pages	long,	so	it	may	take	a	while	to	print	out/copy.

Pacing	Guide

Lesson	6.04:	Polymorphism

386

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit6/WS%206.4.1.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit6/WS%206.4.2.docx

Section Total	Time

Bell-work	and	attendance 5min

Introduction	to	Polymorphism 10min

Tracing	Inheritance	Guide 10min

Student	practice:	WS	6.4.1 25min

Grade	a	worksheet	and	announce	class	grade 5min

Procedure
Hook	your	class	today	by	displaying	a	sample	of	polymorphic	code,	and	asking	students	to
vote	as	to	whether	they	think	the	code	is	valid.	Raise	the	stakes	by	offering	extra	class
participation	points	to	the	students	that	vote	correctly.	Ask	students	to	explain	their
reasoning	behind	the	answer,	and	allow	a	little	time	for	debate.

Bell-work	and	Attendance	[5	minutes]

Introduction	to	Polymorphism	[10	minutes]

1.	 Be	forewarned	that	students	may	have	a	hard	time	with	polymorphic	syntax.	Up	until
now,	we’ve	been	drilling	matching	keywords	and	types.	Passing	different	types	as
parameters	within	the	same	method	may	seem	counterintuitive.	You	should	drill	and
repeat	that	such	behavior	is	only	valid	when	substituting	subclass	objects.

2.	 Polymorphism	is	the	ability	for	the	same	code	to	be	used	with	several	different	types	of
objects.	Although	the	same	code	is	used,	it	will	behave	differently	depending	on	the
type	(class)	of	object	used.

Why	does	this	work?	It	is	legal	for	a	superclass	variable	to	refer	to	an	object	of	its
subclass.	Reference	variables	do	not	have	to	exactly	match	the	type	of	object	they
refer	to!

If	public	class		Lion		extends		Animal	{	…	}	,

then		Animal	simba	=	new	Animal();	
or		Animal	simba	=	new	Lion();	
or		Lion	simba	=	new	Lion();	
but	not		Lion	simba	=	new	Animal();	

The	object	referred	to	by	simba	refers	to	a	Lion	object,	not	an	Animal	object.
Methods	called	on	simba	will	behave	like	a	Lion	object	(e.g.	the	Lion	roars).	It	may
be	beneficial	to	discuss	the	following	points	with	your	students:

Lesson	6.04:	Polymorphism

387

i.	 	Lion		is	a	type	of		Animal		so	it	is	okay	to	assign		simba		to	an		Animal	.

ii.	 Since		Lion		overrides	some	of	the	methods	of		Animal	,	when	we	call	those
overridden	methods,	we’ll	still	see	the	behavior		Lion		defines.

iii.	 When	we	assign	something	to	an		Animal	,	the	only	requirement	is	that	it	is-a-
particular		Animal	.	So	we	can	only	access	behavior	(methods)	that	the
	Animal		class	knows	about.

3.	 Ask	students	to	think-pair-share	to	provide	examples	of	other	correct	assignment
statements.	When	you	call	on	students	for	examples,	be	sure	to	have	students	explain
how	the	new	objects	will	behave	(what	methods	apply).

4.	 If	TextExcel	has	already	been	introduced	in	any	capacity,	it’s	easy	to	use	the	Cells	as
examples.	The	RealCell	class	is	the	superclass	to	the	ValueCell,	PercentCell	and
FormulaCell	making	it	easy	to	get	returned	values	as	a	double:

RealCell	myCell	=	(any	subcell);

myCell.getDoubleValue();				//	Returns	the	double	value	to	be	displayed.

5.	 Ask	students	to	walk	through	the	MusicalInstrument	example	with	you.

MusicalInstrument[]	instruments	=	{

				new	MusicalInstrument(),

				new	ElectricKeyboard(),

				new	Guitar(),

				new	ElectricGuitar()

};

for	(int	i	=	0;	i	<	instruments.length;	i++)	{

				System.out.println(instruments[i]);

				instruments[i].pickSound();

				instruments[i].playNote();

				System.out.println();

}

Have	your	students	read	the	table	of	outputs	(on	the	slides)	and	fill	in	the	original
method	to	find	their	answer.	It	will	help	them	with	the	worksheet.

Tracing	Inheritance	Guide	[10	minutes]

1.	 Distribute	copies	of	WS	6.4.2	and	review	the	steps	that	all	students	should	use	to
determine	the	output	of	a	polymorphic	program	like	the	example	you	just	showed.	They
should	use	this	handout	the	way	they	use	their	problem-solving	algorithm,	as	a
procedure	to	be	used	on	every	polymorphic	problem.

Lesson	6.04:	Polymorphism

388

2.	 Demonstrate	Step	1:	Using	the	ABC	example	in	section	9.3	of	the	book,	diagram	the
class	hierarchy.	Give	the	first	example	with	Tricky	Code	Tip	that	the	header	without
extends	is	the	superclass,	then	have	students	help	you	fill	out	the	rest	of	this	diagram.

3.	 Demonstrate	Step	2:	Starting	with	class		A		(as	emphasized	below),	determine	the
output	for	each	method	listed.	Have	students	fill	in	this	table	in	their	notes,	volunteering
answers	for	classes		B	,		C	,	and		D	.

4.	 Demonstrate	Step	3:	Project	the	client	code		ABCDMain		and	ask	students	to	use	the
table	to	predict	the	outcome	from	the	code.	The	correct	output	is	given	below:

Lesson	6.04:	Polymorphism

389

A

A1

A2

A

A1

B2

C

C1

A2

C

C1

D2

Place	the	class	hierarchy	for	classes		E	,		F	,		G		and		H		on	the	projector	(also	in
section	9.3).	Give	students	a	few	minutes	to	use	the	Tracing	Inheritance	guide	to	create
a	table	of	output	for	classes		E	,		F	,		G		and		H	.

Student	Practice:	WS	6.4.1	[25	minutes]
1.	 Round-robin	is	a	drilling	and	error-checking	exercise	used	with	worksheets.	Students

write	their	name	on	the	worksheet,	complete	the	first	problem,	then	pass	the	paper	to
the	student	on	the	right	(or	whatever	direction	you	choose).	The	next	student	first
checks	the	previous	answer,	correcting	it	if	need	be,	then	completes	the	second
question.	Each	student	then	passes	on	the	paper	again.	By	the	end	of	the	exercise,
each	student	has	checked	and	completed	each	question	on	the	worksheet.

2.	 The	hook	is	that	you	choose	only	ONE	worksheet	from	the	pile	to	grade.	All	students
get	a	grade	from	that	one	worksheet.	This	keeps	students	invested	throughout	the
exercise.	Advanced	students	will	check	questions	throughout	the	whole	worksheet,	and
all	students	will	try	their	best	to	catch	their	own	(and	others’)	mistakes,	since	the	whole
class	shares	the	randomly-selected-paper’s	grade.

i.	 Since	today’s	worksheet	only	has	13	questions,	your	chosen	worksheet	will	only
represent	a	subset	of	the	class.

ii.	 You	should	still	grade	one	worksheet	only,	and	given	everyone	the	same	grade
from	that	one	paper.	This	will	keep	stakes	high	for	all	students,	since	they	won’t
know	which	paper	you	will	select	to	grade.

Lesson	6.04:	Polymorphism

390

iii.	 You	should	time	each	question/checking	interval,	and	call	“SWITCH!”	when	it	is
time	for	students	to	pass	along	papers.	Suggested	time	limits	are	given	below.	If
you	notice	that	a	time	span	is	too	short	or	too	long,	adjust	all	time	spans
accordingly.	Time	estimates	as	given	are	based	off	of	AP	Test	timing.

i.	 Question	1	should	take	5	minutes;	project	the	A,	B,	C,	and	D	classes	on	the
overhead.

ii.	 Question	2	should	take	1	minute.
iii.	 Question	3	should	take	5	minutes.
iv.	 Question	4	should	take	3	minutes.
v.	 Question	5	should	take	2	minutes.
vi.	 Question	6	should	take	5	minutes
vii.	 Question	7	should	take	3	minutes.
viii.	 Question	8	should	take	5	minutes.
ix.	 Question	9–13	should	take	2	minutes
Adjust	the	timing	on	these	questions	as	needed,	but	try	to	keep	a	brisk	pace.	Part
of	the	engagement	factor	is	the	sense	of	urgency.

Grade	A	Worksheet	and	Announce	Class	Grade	[5	minutes]

If	time	allows,	randomly	select	the	worksheet	and	announce	the	class	grade	with	a	bit	of
fanfare,	congratulating	the	class	on	a	job	well	done.	Otherwise,	select	one	paper	to	grade
after	class,	then	return	the	paper	to	the	student	for	study	practice.

Accommodation	and	Differentiation
To	optimize	this	exercise,	you	might	consider	rearranging	students	(or	creating	a	passing-
path)	that	mixes	students	of	different	coding	abilities.	The	advanced	students	can	use	the
extra	time	to	correct	mistakes	made	by	others;	if	they	are	sitting	in	proximity	to	the	student
that	made	the	error,	they	will	have	a	better	chance	of	explaining	the	correct	answer	to	them.

Due	to	the	brisk	pace	of	the	round-robin	rotation,	there	shouldn’t	be	too	much	down	time	for
any	one	student.	If	you	do	find	a	student	that	is	looking	bored,	make	eye	contact	with	them
as	you	remind	the	entire	class	that	everyone	should	be	checking	the	problems	handed	to
them	once	they	are	done	with	solving	their	assigned	problem.

In	the	ELL	classroom,	you	may	need	to	reduce	the	number	or	complexity	of	questions
offered	on	the	worksheet	to	complete	this	lesson	in	one	class	period.

Reassign	the	removed	questions	as	homework,	bellwork,	or	quizzes.

Read	each	question	aloud	for	the	class.

Lesson	6.04:	Polymorphism

391

Do	the	first	few	problems	(or	a	smattering	of	problems	throughout	the	worksheet)	as	a
whole	group	for	additional	scaffolding.

Alternatively,	you	can	do	the	entire	assignment,	but	allow	2	class	periods	to	complete	each
group.

Forum	discussion
Lesson	6.04	Polymorphism	(TEALS	Discourse	account	required)

Lesson	6.04:	Polymorphism

392

http://forums.tealsk12.org/c/unit-6/6-04-polymorphism

Lesson	6.05	—	Has-a	Relationships

Overview

Objectives	—	Students	will	be	able	to…

Identify	and	explain	why	two	classes	have	an	is-a	or	a	has-a	relationship.
Create	a	has-a	relationship	between	two	classes

Assessments	—	Students	will…

Complete	an	AP	Section	II	question	“Trio”

Homework	—	Students	will…

Read	BJP	9.5

Materials	&	Prep
Projector	and	computer	(if	you	are	able	to/opt	to	use	Eclipse	with	your	students)
Whiteboard	and	markers
Projection	or	classroom	copies	of	WS	6.5	(an	AP	Section	II	question)
Student	pair	assignments
Video	for	hook:	https://vimeo.com/18439821

Pacing	Guide

Section Total	Time

Bell-work	and	attendance 5min

Introduction	(with	pair	work) 15min

Student	practice 25min

Student	share/whole	group	review 10min

Procedure

Lesson	6.05:	Has-a	Relationships

393

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit6/WS%206.5.docx
https://vimeo.com/18439821

Hook	your	class	today	with	the	Shapeshifter	video	(link	in	“Materials	&	Prep”).	Ask	students
what	the	different	animals	had	in	common	in	the	video,	and	what	real	animals	have	in
common.	What	behaviors	did	the	animals	have	in	common?	What	was	a	behavior	that	stuck
out	as	unique	to	each	animal?	The	idea	here	is	to	get	students	thinking	about	how	to	use
inheritance	(and	eventually	polymorphism)	to	reuse	code	for	different	classes.

Bell-work	and	Attendance	[5	minutes]

Introduction	(with	pair	work)	[15	minutes]

1.	 Continue	the	class	discussion	by	prompting	students	to	pair	up	and	draw	out	a	class
hierarchy	including:	Animal,	Carnivore,	Tiger,	and	Donkey.

2.	 After	students	have	created	the	hierarchy,	ask	them	to	consider	some	behaviors	that
would	also	apply	to	the	classes	Zoo	and	Zookeeper.	Students	should	share	these
behaviors	and	jot	them	down	in	their	notebooks	for	later	reference.

3.	 Using	student-generated	examples,	illustrate	the	is-a	relationships,	and	areas	where
you	might	include	has-a	relationships:

An	is-a	describes	inheritance	between	a	subclass	and	a	superclass.	The
superclass	inherits	all	the	code	from	the	superclass	because	you	can	think	of	it	as	a
subset	of	the	superclass.	(Hopefully	a	student	can	volunteer	an	answer	like	this.)

Have	students	create	class	hierarchies	for	ZooStaff	and	ZooFacilities.	(Some	staff
titles	could	be	zookeeper,	customer	service	representative,	or	trainer.	Typical	zoo
facilities	include	bathrooms,	gift	shops,	and	cafeterias.)

Lesson	6.05:	Has-a	Relationships

394

Has-a	describes	the	relationship	between	a	class	that	is	client	code	of	another
class.	The	class	is	a	component	of	the	“client	class,”	and	one	object	contains	the
other.	To	create	a	has-a	relationship,	write	a	field	in	the	class	that	refers	to	the	other
class:

public	class	Zoo	{

				private	Animal	[]	animals;

				private	ZooMember	[]	zooMembers;

				private	ZooFacility	[]	zooFacilities;

				…

We	create	fields	that	refer	to	other	classes	(highlighted)	to	create	a	has-a
relationship.	When	you	can’t	substitute	one	class	for	another,	you	should	use	a
has-a	relationship.	A	zoo	is	not	an	animal	(or	array	of	animals),	nor	is	it	a	staff
member	(or	array	of	staff	members).	A	zoo	contains,	or	has,	all	of	these
components.

Student	Practice	[25	minutes]

1.	 Students	should	remain	in	their	student	pairs.	If	your	classroom	has	computers,
students	should	complete	the	following	exercise	in	Eclipse,	and	you	should	review	the
protocol	for	submitting	assignments	electronically.

2.	 Before	students	get	started,	ask	students	what	types	of	meals	they	see	in	fast	food
restaurants,	and	what	options	are	typically	bundled	together.	Guide	students	to	discuss:

i.	 Sandwiches:	chicken,	burger,	fish

ii.	 Drinks:	soda,	water,	juice,	coffee,	milk

iii.	 Sides:	French	fries,	onion	rings,	tatertots,	salad,	apple	slices

In	the	examples	here,	ChickenSandwich,	BurgerSandwich,	FishSandwich,	SodaDrink
(etc.)	are	subclasses.	A	very	rich	class	hierarchy	can	be	formed	here!	Explain	to
students	that	they’re	going	to	generate	complex	code	that	uses	inheritance	and
polymorphism	to	model	the	state	and	behavior	of	ValueMeals.

Lesson	6.05:	Has-a	Relationships

395

3.	 On	the	projector,	whiteboard,	or	as	a	handout,	give	students	the	2014	AP	exam	Section
II	question	4	problem	“Trio.”	A	copy	of	this	problem	has	been	included	in	your	materials
as	WS	6.5.

4.	 Give	students	≈20	minutes	to	write	and	debug	their	sample	code.	Walk	around	the	room
checking	on	students	and	offering	guidance	if	they	are	stuck	or	on	the	wrong	path.
Choose	one	or	two	student	pairs	to	share	their	code	with	the	class	during	whole-group
discussion,	and	help	those	students	save	and	transfer	their	files	to	the	projecting
computer.

Student	Share/Whole	Group	Review	[10	minutes]

In	a	whole	group,	ask	for	students	to	share	their	code	and	explain	how	the	established	the
has-a	relationship	between	classes.	Check	for	student	understanding	by	asking	why	a	has-a
relationship	was	more	appropriate	than	creating	a	is-a	(hierarchical)	relationship.

Accommodation	and	Differentiation

Common	Questions/Issues

You	may	have	to	remind	students	to	write	toString	methods	in	the	other	classes	as	well.
Have	students	demonstrate	flow	of	control	on	the	toString	method	to	demonstrate	why	a
toString	method	in	the	“client	class”	will	require	a	toString	method	in	the	other	classes.

Check	to	make	sure	students	are	using	private	fields.	If	you’re	seeing	many	students
using	public	fields,	pause	the	class	to	lead	a	whole	group	discussion	about	why
encapsulation	is	so	important.	(The	Y2K	bug	is	a	particularly	exciting	example	of	what
happens	when	we	don’t	encapsulate	code.	Be	sure	to	describe	the	panic	and	doomsday
predictions	that	this	caused!)

If	your	students	have	been	having	trouble	tracing	the	flow	of	control	as	a	method	calls
another	method	in	a	different	class,	take	some	time	to	demonstrate	how	to	use	the	step-
into	and	step-over	buttons	in	Eclipse.

The	step-over	and	step-into	buttons	can	be	found	in	the	top	toolbar.

In	the	screenshot	below,	the	pointer	rests	on	the	step-into	button,	which	will
advance	the	flow	of	control	one	step	at	a	time.	The	step-over	button	will	jump	to	the
end	location	of	control	once	the	entire	method	has	executed.

Lesson	6.05:	Has-a	Relationships

396

If	students	complete	this	assignment	quickly,	encourage	them	to	increase	the	complexity
and	depth	of	the	program.	Some	ideas	to	get	students	started:

Introduce	an		Aquarium		class	with	associated	has-a	and	is-a	relationships	to	some	of
the	classes	you	already	created.

Create	additional	subclasses	in		Animal	,	or	classes	such	as		AquariumStaff		as	needed.

If	you’d	like	for	students	to	expand	on	the	AP	question	given,	have	students:

Create	additional	subclasses	for	Drink/Sandwich/Salad	(if	not	already	done)

Create	a	Menu	of	ValueMeal	options,	and	allow	user	to	select	the	options	they	want	to
create	a	meal

Add	serving	sizes	to	Drink	and	Side,	and	create	a	SuperSizeValueMeal

Add	price	to	Sandwich/Drink/Salad	and	have	ValueMeal	prices	be	85%	of	the	total	item
prices.

If	students	are	struggling	with	the	assignment,	allow	more	time	(up	to	two	class	periods)	to
complete	the	lesson.	Read	the	prompt	aloud	for	the	class,	and	do	the	steps	together	if
needed.	In	classes	with	ELLs,	you	can	distribute	saved	Eclipse	files	that	contain	an	entire
functional	program,	with	shuffled	components.	Students	will	need	to	organize	the	code
fragments	into	the	proper	order	(a	Parsons	problem).

Teacher	Prior	CS	Knowledge
Is-a	relationships	define	class	hierarchy	through	inheritance,	while	has-a	relationships	define
classes	through	the	incorporation	of	component	classes.

Misconceptions
Has-a	implies	a	one-to-one	relationship,	while	in	many	cases,	classes	have	a	one-to-many
relationship.	Use	examples	where	the	has-a	(composition)	relationship	is	more	than	just	a
1∶1	relationship.	For	example,	a	deck	of	cards	has	52	cards.

Forum	discussion

Lesson	6.05:	Has-a	Relationships

397

Lesson	6.05	Has-a	Relationships	(TEALS	Discourse	account	required)

Lesson	6.05:	Has-a	Relationships

398

http://forums.tealsk12.org/c/unit-6/6-05-has-a-relationships

Lesson	6.06	—	Interfaces

Overview

Objectives	—	Students	will	be	able	to…

Implement	and	use	interfaces.

Assessments	—	Students	will…

Complete	an	in-class	competition

Homework	—	Students	will…

Read	BJP	9.6
Summarize	notes	in	notebook	for	tomorrow’s	notebook	check
For	extra	credit:

Generate	your	own	class	hierarchy	that	demonstrates	the	same	concepts	illustrated
by	the	Financial	Class	Hierarchy	outlined	in	the	book.	The	extra-credit	project	is
due	[one	week	from	assignment].

Materials	&	Prep
Projector	and	computer	(if	you	are	able	to/opt	to	use	Eclipse	with	your	students)
White	paper	and	markers
In	Class	Poster	6.6
Small	group	assignments	(≈4	people	per	group)

Pacing	Guide

Section Total	Time

Bell-work	and	attendance 5min

Introduction 15min

Class	competition	(small	groups) 20min

Whole	group	review	and	competition	judging/award 15min

Lesson	6.06:	Interfaces

399

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit6/Poster%206.6.pptx

Procedure
Hook	your	class	by	announcing	a	class	competition.	Feature	TEALS	swag,	extra	credit
points,	free	homework	passes,	or	raffle	tickets	as	prizes.	Break	students	into	their	small
groups	before	beginning	your	introduction.

Bell-work	and	Attendance	[5	minutes]

Introduction	[10	minutes]

1.	 Begin	with	a	lecture/discussion	about	inheritance	and	interfaces.

2.	 We’ve	seen	that	inheritance	is	a	useful	tool	for	programming.	(Ask	students	why
inheritance	is	useful:	it	enables	polymorphism	and	code	sharing.)

But	inheritance	has	limitations:

Ask	students	if	we	can	inherit	code	from	more	than	one	superclass.	(No.)

If	you	want	an	is-a	relationship	or	polymorphism,	but	you	don’t	want	to	give	a
subclass	access	to	the	code,	inheritance	won’t	give	you	the	encapsulation	you
need.

3.	 There’s	a	special	tool	we	can	use	called	an	interface	that	allows	you	to	represent	a
common	supertype	between	classes	without	actually	sharing	code.

An	interface	consists	of	a	set	of	method	declarations	without	a	method	body.

Think	of	the	interface	as	a	promise	of	behavior;	the	method	is	declared,	but	not
defined.	The	method	will	be	(is	promised	to	be)	defined	in	the	subclass	method.

If	you	don’t	define	the	method	in	your	subclass	(if	you	don’t	follow	through	on	your
promise),	you’ll	get	an	error.

4.	 Demonstrate	what	this	looks	like	in	practice.	You	can	use	the	example	given	below,	or
ask	the	class	to	help	you	generate	an	example	of	their	own	choosing.	Start	with	a
sketch	so	students	can	visualize	the	relationships	between	interfaces	and	classes,	and
review	inheritance	vocabulary	as	you	construct	the	diagram:

Lesson	6.06:	Interfaces

400

Interfaces	are	represented	by	dotted	boxes	and	arrows,	class	and	class	hierarchies	are
represented	by	solid	lines	and	boxes.

If	you	wish	to	show	your	students	that	interfaces	can	be	shared	by	unrelated	class
hierarchies,	you	can	add	to	the	diagram	above	as	shown	below.	The	color	of	the
interface	arrows	has	been	changed	to	red	so	it’s	easier	to	see	where	to	draw	the	lines.

Lesson	6.06:	Interfaces

401

public	interface	Salty	{										//	This	is	a	promise	to	implement	the	sodiumCont

ent

				double	sodiumContent();							//	in	the	class	that	implements	the	Salty	interf

ace.

}

public	interface	Aromatic	{

				String	describeAroma();							//	Notice	the	lack	of	"public"!	Public	is	*assum

ed*.

}

public	interface	Greasy	{									//	Point	out	that	interfaces	look	just	like	clas

ses

				double	amountOfGreaseInMg();		//	but	without	fields	or	method	bodies

}

public	interface	Edible	{

				double	calories();

}

5.	 As	you	write	the	class	header	below,	point	out	the	keyword		implements		and	match	up
the	interfaces	in	the	header	with	the	interfaces	in	the	diagram.

public	class	Bacon	extends	Pork	implements	Salty,	Aromatic,	Greasy,	Edible	{

				private	double	amountInKg;

				public	Bacon(double	amount)	{

								amountInKg	=	amount;

				}

				public	double	calories()	{

								return	amountInKg	*	CALORIES_PER_KG_OF_BACON;

				}

Ask	students	to	point	out	the	header	and	the	constructor.	Ask	them	if	they	can
guess	why	you	included	a	calories	method.	If	they	don’t	remember	the	answer	from
their	reading	assignment,	point	to	the	interfaces	without	any	additional	comment
(you’re	following	through	on	your	promise	to	implement	the	method).

Ask	students	if	the	Bacon	class	is	complete.	Have	them	help	you	fix	it	by	adding	the
other	methods	you	promised	to	implement	in	the	Aromatic,	Greasy,	and	Salty
interfaces.	Point	out	Poster	6.6	as	an	aid	to	help	students	write	interfaces	correctly.

Class	Competition	(Small	Groups)	[20	minutes]

Lesson	6.06:	Interfaces

402

1.	 On	the	board	or	overhead,	project	a	series	of	five	interfaces	on	a	theme	that	you	feel
will	creatively	engage	your	class	(you	should	blank	out	the	parts	that	you	feel	will	make
the	example	most	engaging).	Some	sample	classes	and	interfaces	with	suggested
methods:

i.	 Subclasses:		Red	,		Orange	,		Yellow	,		Green	,		Blue	

Interface:		color	
Sample	Methods:		double	wavelengthInNm	,		Boolean	isPrimaryColor	

ii.	 Subclasses:		Wood	,		Brick	,		Adobe	,		Stone	,		Canvas	

Interface:		buildingMaterial	
Sample	Methods:		String	movableHousing	,		double	costPerLb	

iii.	 Subclasses:		Boeing	747	,		Pheasant	,		PaperAirplane	,		Cannonball	

Interface:		flies	
Sample	Methods:		getMaximumAltitude	,		getRange	,		getSpeed	

2.	 Invite	each	team	to	provide	a	team	name,	and	explain	the	challenge:

i.	 Students	should	define	classes	to	implement	as	many	combinations	of	interfaces
as	possible.

ii.	 Students	must	include	at	least	1	method	for	each	interface.

iii.	 Each	class	has	to	implement	the	interface	methods	and	include	a	constructor.

3.	 The	team	with	the	most	combinations	of	interfaces	at	the	end	of	the	time	limit	(≈20
minutes)	win	the	competition.

Whole	Group	Review	&	Competition	Judging/Award	[15
minutes]

Leave	time	to	have	groups	share	their	interfaces	with	the	rest	of	the	class	during	whole
group	discussion.	Pay	attention	to	any	particularly	creative	or	wacky	examples	that	students
come	up	with.

Accommodation	and	Differentiation
If	your	students	require	additional	practice	with	interfaces	before	beginning	the	class
competition,	work	through	building	a	class	Lard	that	implements	the	interfaces	Greasy	and
FoodItem.

During	the	Activity

Lesson	6.06:	Interfaces

403

If	your	students	require	extra	scaffolding,	generate	1	method	for	each	interface	as	a	whole
group	before	the	competition	begins.	Write	these	methods	on	the	board	with	the	interfaces
for	easy	reference.

If	your	students	require	an	extra	challenge,	change	rule	c	(in	step	2	of	Activity)	to	include
additional	methods	and/or	fields.

Teacher	Prior	CS	Knowledge
A	student	may	ask	about	the	Is-A	and	Has-A	relationships	introduced	in	the	previous	lesson,
which	are	great	for	describing	inheritance	vs	composition.	But	what	about	interfaces?	The
relationship	that	can	be	used	is	Can-Do.	A	class	that	implements	an	interface	can	do	the
behaviors	specified	in	the	class	it	implements.

Misconceptions
Students	often	have	confusion	on	the	difference	between	extends	vs	implements.
Syntactically	is	fairly	straightforward	to	extend	from	a	super	class	and	implement	from	an
interface.	Conceptually,	inheritance	(extends)	is	used	to	define	a	class	hierarchy	where
common	functionally	is	factored	out	into	the	superclass.	In	contract,	interfaces	(implements)
is	used	to	separate	out	the	methods	definition	from	the	method	implementation.	No	class
hierarchy	is	implied	when	implementing	an	interface.

Video
BJP	9-3,	Implement	Comparable	Interface
http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c10-3

CS	Homework	Bytes,	Interface	and	Abstract	Classes,	with	Elizabeth
https://www.youtube.com/watch?v=iiZ_TIZsE6Q

CSE	143,	Interfaces	(note:	uses	ArrayIntList	written	in	class	as	an	example)	(3:43–
26:35)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=696d623a-dca4-4b64-
bdfd-71d49fc9b47d&start=223

Forum	discussion
Lesson	6.06	Interfaces	(TEALS	Discourse	account	required)

Lesson	6.06:	Interfaces

404

http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c10-3
https://www.youtube.com/watch?v=iiZ_TIZsE6Q
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=696d623a-dca4-4b64-bdfd-71d49fc9b47d&start=223
http://forums.tealsk12.org/c/unit-6/6-06-interfaces

Lesson	6.06:	Interfaces

405

Lesson	6.07	—	Programming	Project

Overview

Objectives	—	Students	will	be	able	to…

Write	complex	code	that	uses	polymorphism,	inheritance,	and	interfaces.

Assessments	—	Students	will…

Submit	multiple	programs	electronically
Take	two	quizzes	from	the	Barron’s	review	book

Homework	—

A	list	of	homework	assignments	is	listed	in	the	Pacing	Guide

Materials	&	Prep
Projector	and	computer
Whiteboard	and	markers
Classroom	copies	of	textbook	(for	Day	4)
A	sample	grocery	receipt	(for	Day	4)

Pacing	Guide:	Day	1

Section Total	Time

Programming	Project	I Full	class

Grade	student	notebooks During	class

Homework:
Outline	Chapter	9 TONIGHT

Pacing	Guide:	Day	2

Lesson	6.07:	Programming	Project	(5	Days)

406

Section Total	Time

Programming	Project	I
(Project	9.1	from	the	textbook) Full	class

Check	student	outlines	for	completeness During	class

Homework:
Read	and	outline	Chapter	4	in	Barron’s	review	book TONIGHT

Pacing	Guide:	Day	3

Section Total	Time

Programming	Project	II
(Project	9.3	from	the	textbook) Full	class

Homework:
Take	the	Chapter	4	quiz.	Grade	your	answers. TONIGHT

Pacing	Guide:	Day	4

Section Total	Time

Programming	Project	III
(Exercise	9.3	from	the	textbook) Full	class

Homework:
Read	and	outline	Chapter	3	in	Barron’s	review	book. TONIGHT

Pacing	Guide:	Day	5

Section Total	Time

Take	Chapter	3	quiz	IN	CLASS
Students	grade	their	own	answers
and	submit	review	books	for	a	grade.

Full	class

Check	Barron’s	review	books	for	highlighting,
note-taking,	and	quiz	completion/grading During	class

Homework:
Review	Chapter	9	and	submit	5	questions	for	review. TONIGHT

Procedure

Lesson	6.07:	Programming	Project	(5	Days)

407

Students	should	complete	the	programming	projects	on	their	own.	Read	through	the
instructions	with	the	class,	and	help	students	pace	themselves	by	setting	progress	goals	for
each	day.

Before	letting	students	begin	the	projects,	ask	students	what	resources	are	available	to	them
so	they	can	help	themselves	before	calling	you	over.	(Notebooks,	textbook,	class	handouts,
student	work	and	posters	hanging	around	the	room,	online	resources.

About	Barron’s

Barron’s	is	an	AP	CS	A	review	book	that	some	schools	provide	students.	If	your	school
doesn’t	provide	Barron’s	there	are	many	alternative	homework	assignments	that	can	be
found	at	codingbat.com/java	or	practice-it.

Alternatively,	you	can	save	time	spent	on	the	lab	by	checking	activities	as	homework.

If	you’ve	chosen	to	introduce	TextExcel	earlier,	you	can	assign	portions	of	TextExcel	as
homework	here	to	save	time	later	in	the	course.	TextExcel	like	FracCalc	takes	a	lot	of	in
and	out	of	class	time	to	complete,	and	time	saved	here	saves	time	for	AP	test	review.

Programming	Projects

On	the	overhead	or	shared	electronically,	provide	students	with	the	following	programming
prompts:

Programming	Project	I

Write	an	inheritance	hierarchy	of	three-dimensional	shapes:

1.	 Make	a	top-level	shape	interface	that	has	methods	for	getting	information	such	as	the
volume	and	surface	area	of	a	three-dimensional	shape.

2.	 Then	make	classes	and	subclasses	that	implement	various	shapes	such	as	cubes,
rectangular	prisms,	spheres,	triangular	prisms,	cones,	and	cylinders.

3.	 Place	common	behavior	in	superclasses	whenever	possible,	and	use	abstract	classes
as	appropriate.

4.	 Add	methods	to	the	subclasses	to	represent	the	unique	behavior	of	each	three-
dimensional	shape,	such	as	a	method	to	get	a	sphere’s	radius.

Programming	Project	II

Write	an	inheritance	hierarchy	that	stores	data	about	sports	players.

Lesson	6.07:	Programming	Project	(5	Days)

408

1.	 Create	a	common	superclass	or	interface	to	store	information	common	to	any	player
regardless	of	sport,	such	as	name,	number,	and	salary.

2.	 Then	create	subclasses	for	players	of	your	favorite	sports,	such	as	basketball,	soccer	or
tennis.

3.	 Place	sport-specific	information	and	behavior	(such	as	kicking,	vertical	jump	height,	or
speed)	into	subclasses	whenever	possible.

Programming	Project	III

Have	students	submit	answers	to	Exercise	9.3	in	their	textbooks.	This	assignment	will	be
submitted	on	paper.	As	written,	students	are	not	given	some	code	that	implements
GroceryBill,	Employee,	and	Item.	If	you	wish	to	make	this	an	electronic	assignment,	you
should	consider	providing	students	with	some	starter	code.

Accommodation	and	Differentiation
In	some	classrooms,	you	may	want	to	provide	the	mathematical	formulas	for	finding	the
volume	of	spheres,	triangular	prisms,	cones,	and	cylinders	so	students	can	focus	on	coding
rather	than	finding	and	translating	the	math.	You	can	also	introduce	and	reinforce	useful
vocabulary	by	providing	physical	examples	of	these	shapes.	If	you	are	having	trouble	finding
prisms,	cones,	and	cylinders,	you	can	make	these	items	out	of	paper	by	printing	out
templates	and	following	the	instructions	at	this	website:	(http://tinyurl.com/asz6e69)

To	help	students	process	Programming	Project	III,	you	may	want	to	read	through	exercise
9.3	in	the	textbook	with	the	class,	breaking	down	the	problem	into	its	parts	as	a	whole	group.
In	ELL	classrooms,	you	should	bring	in	physical	samples	of	grocery	receipts	and	pass	them
around	or	view	them	on	the	projector.	Have	students	point	out	the	different	parts	of	the
receipt	as	they	relate	to	the	assignment.

Remind	students	to	always	draw	a	structure	diagram,	sketch	out	their	plan	using
pseudocode,	and	include	comments	to	remind	themselves	(and	you!)	of	what	each	section
of	code	is	for.

Forum	discussion
Lesson	6.07	Programming	Project	(TEALS	Discourse	account	required)

Lesson	6.07:	Programming	Project	(5	Days)

409

http://tinyurl.com/asz6e69
http://forums.tealsk12.org/c/unit-6/6-0701-0705-programming-project

Lesson	6.07:	Programming	Project	(5	Days)

410

Lesson	6.08	—	Finding	&	Fixing	Errors

Overview

Objectives	—	Students	will	be	able	to…

Find	errors	in	their	returned	homework	assignments.
Correct	their	code

Assessments	—	Students	will…

Re-submit	all	homework	assignments	with	corrected	answers.

Homework	—	Students	will…

Review	for	the	test	by	by:
Reading	over	the	blue	pages	at	the	end	of	Chapter	9

Submit	5	questions	for	review	in	class	tomorrow	using	electronic	survey

Materials	&	Prep
Any	student	homework	assignments	that	you	have	not	yet	returned
Student	self-help	system	(such	as	C2B4	or	student	pairing)
Electronic	survey	for	student	review	requests

The	homework	tonight	asks	students	to	submit	5	questions	for	review.	Create	an	electronic
survey	for	students	to	complete	with	6	text	fields,	one	for	name,	and	5	for	questions	they
have	about	Ch.	9	content.	Set	a	deadline	by	which	time	students	must	have	submitted	5
questions	from	Ch.9	If	students	do	not	have	questions,	stipulate	that	they	still	have	to	submit
something	to	receive	credit,	even	if	it	is	only	questions	they	think	other	students	may	have.

Pacing	Guide

Lesson	6.08:	Finding	&	Fixing	Errors

411

Section Total	Time

Bell-work	and	attendance 5min

Introduction	and	homework	distribution 5min

Student	work 35min

Students	trade	work,	check,	and	submit 10min

Procedure
Today	we	continue	reinforcing	concepts	and	applying	the	tools,	procedures,	and	code	that
were	introduced	last	week.	Students	will	have	the	opportunity	to	correct	any	incorrect
homework	or	classwork	assignments.	If	students	did	not	have	time	to	finish	the	homework
from	yesterday,	you	may	allow	them	time	to	work	on	that	today.

Bell-work	and	Attendance	[5	minutes]

Introduction	and	Homework	Distribution	[5	minutes]

1.	 Return	student	homework	packets,	or	have	students	place	their	returned	homeworks	in
a	pile	on	their	desk.

2.	 Explain	to	students	that	they	have	the	opportunity	to	get	full	credit	on	their	homework
grades	by	correcting	them	now,	in	class.	Ask	students	for	suggestions/ideas	on	how	to
make	sure	they	don’t	miss	any	errors.

By	now	students	should	be	used	to	relying	on	their	error	checklist/algorithm.

Student	Work	[35	minutes]

Have	students	work	individually	to	correct	their	homework	grades.

Offer	time	checks	for	students	so	they	stay	on	task.

If	students	have	not	finished	homework	assignments,	allow	them	time	today	to	complete
these	assignments	to	turn	in	for	partial	credit.

Students	trade	work,	check,	and	turn	in	[10	minutes]

At	the	end	of	class,	have	students	trade	their	homework	assignments	to	evaluate	each
other’s	corrections	before	submission.

Lesson	6.08:	Finding	&	Fixing	Errors

412

Accommodation	and	Differentiation
In	ELL	classrooms,	pair	students	and	allow	them	to	work	together	to	correct	their	work.

For	those	students	who	have	nothing	to	correct	(or	finish	very	early),	reward	them	with	silent
free	time,	or	allow	them	to	work	on	a	free-choice	programming	project.

Forum	discussion
Lesson	6.08	Finding	&	Fixing	Errors	(TEALS	Discourse	account	required)

Lesson	6.08:	Finding	&	Fixing	Errors

413

http://forums.tealsk12.org/c/unit-6/6-08-finding-fixing-errors

Lesson	6.09	—	Review

Overview

Objectives	—	Students	will	be	able	to…

Identify	weaknesses	in	their	Unit	6	knowledge.

Assessments	—	Students	will…

Create	a	personalized	list	of	review	topics	to	guide	tonight’s	study	session.

Homework	—	Students	will…

Study	for	tomorrow’s	test	using	targeted	review	list

Materials	&	Prep
Projector	and	computer
Whiteboard	and	marker
Results	from	electronic	survey	of	review	topics

Once	students	have	submitted	their	review	requests,	assemble	those	topics	into	categories
and	prepare	to	re-teach	the	topics	as	needed.

Pacing	Guide

Section Total	Time

Bell-work	and	attendance 5min

Review	of	student	questions 40min

Check	student	study	lists 5min

Procedure

Bell-work	and	Attendance	[5	minutes]

Lesson	6.09:	Review

414

Review	of	Student	Questions	[30	minutes]

1.	 Clearly	indicate	that	you	expect	all	students	to	have	a	list	of	review	topics	to	study	this
evening.	Periodically	remind	students	that	this	list	will	be	checked	at	the	end	of	class.

2.	 Begin	with	a	review	of	student-submitted	questions	before	reviewing	the	practice
questions.

3.	 Finally,	work	through	the	various	review	topics,	prioritizing	questions	that	popped	up	the
most.

Some	questions	you	may	address	while	working	through	the	sample	test.

Be	ready	for	additional	questions	to	pop	up	as	you	go.	Save	yourself	the	work	and
use	old	homework	questions	and	student-generated	test	questions	as	examples	to
work	through.

4.	 Use	a	combination	of	group-solving	questions	on	the	whiteboard,	think-pair-share,	and
timed-response	as	review	strategies.

5.	 After	you’ve	completed	reviewing	an	idea,	remind	the	class	that	they	should	write	down
that	topic	if	they	feel	they	still	have	to	review	it	tonight.

Check	Student	Study	Lists	[5	minutes]

Spend	the	last	5	minutes	of	class	checking	each	student’s	review	topic	list.

Forum	discussion
Lesson	6.09	Unit	6	Review	(TEALS	Discourse	account	required)

Lesson	6.09:	Review

415

http://forums.tealsk12.org/c/unit-6/6-09-review

Test	5	Guide
As	written,	the	test	for	this	unit	is	probably	too	long	for	students	to	complete	in	one	class
period.	Extra	questions	have	been	included	so	you	can:

1.	 Pick	and	choose	which	questions	will	appropriately	assess	your	students.

2.	 Create	different	versions	of	the	test	(if	you’ve	noticed	that	cheating	is	a	problem).

3.	 Simulate	an	authentic	AP	test	experience.

When	modifying	the	test	to	suit	your	students,	don’t	forget	to:

1.	 Change	the	headings	on	Section	I	&	II	to	reflect	the	actual	number	of	questions.

2.	 Change	the	headings	on	Section	I	&	II	to	reflect	the	correct	percentages	of	their	total
test	score.	The	AP	exam	weights	Section	I	&	II	at	50%	of	the	overall	score,	each.

3.	 Adjust	the	test	pacing	for	your	class	period’s	time	span.	The	ultimate	goal	is	to	work
your	students	up	to	a	pace	of	90	seconds	per	Section	I	question,	and	26	minutes	per
Section	II	question	(including	time	for	checking).

4.	 Keep	track	of	which	questions	you	remove	from	the	test	so	you	can	use	them	during
Unit	9	test	prep/review.

Even	in	the	final	(reduced-size)	version,	the	test	will	be	very	long.	Be	sure	to	take	this	into
account	when	photocopying	versions	of	the	test.	If	you	teach	multiple	sections	of	this	class,
you	may	want	to	have	students	use	bubble-in	sheets	so	you	can	erase	student	markings
and	re-use	test	packets	between	class	periods.

Forum	discussion
Test	5	Guide	(TEALS	Discourse	account	required)

Test	5	Guide

416

http://forums.tealsk12.org/c/unit-6/6-99-unit-6-test

Lesson	7.00	—	Test	Review	&	Reteach
N.B.	THIS	LESSON	IS	OPTIONAL	(See	below	for	details.)

Overview

Objectives	—	Students	will	be	able	to…

Re-learn	or	strengthen	content	knowledge	and	skills	from	Unit	6.

Assessments	—	Students	will…

Re-submit	test	answers	with	updated	corrections	for	partial	or	full	credit
Credit	depends	on	instructor	preference

Homework	—	Students	will…

Read	BJP	13.1	up	to	“Sorting.”
Correct	any	incorrect	test	answers	by	re-answering	on	a	separate	sheet	of	paper

To	get	back	credit,	they	must	justify	their	new	answers
Staple	new	answer	sheet	to	old	test	and	turn	in	tomorrow

Materials	&	Prep
Projector	and	computer
Whiteboard	and	markers
Corrected	student	tests
Student	grades	(posted	online,	emailed	to	students,	or	handed	back	on	paper	in	class)
Digital	copy	of	test	questions	for	projector

To	accommodate	for	late-year	scheduling	drift,	Unit	7	is	planned	with	4	periods	of	“wiggle
room.”	Unit	7	includes	a	long-format	lab	that	takes	a	minimum	of	11	55-minute	class	periods
to	complete.	If	you	feel	that	you	need	to	plan	additional	time	for	students	to	complete
the	Elevens	lab,	skip	this	review	lesson,	and	assign	test	review	and	correction	as	a
homework	assignment.	Allow	students	to	work	together	on	the	assignment	so	they	can

Lesson	7.00:	Test	Review	&	Reteach

417

help	each	other	with	correcting	answers.	It	is	a	good	idea	to	check	with	each	group	before
they	leave	class	to	ensure	that	they	have	A)	exchanged	contact	information,	B)	have	set	up
a	location	and	time	to	do	the	assignment	together.

The	rest	of	the	homework	assignments	can	be	shifted	accordingly,	since	there	are	fewer
homework	assignments	than	there	are	days	of	the	Elevens	lab	(see	LP	7.3	for	homework
schedule).

Pacing	Guide

Section Total	Time

Bell-work	and	attendance 5min

Class	discussion	(if	needed) 10min

Test	review	and	reteach 35min

Check	student	notes	and	return	tests 5min

Procedure
Return	student	grades	before	class	begins	or	while	students	are	completing	the	bellwork.

Do	not	return	students’	tests	before	the	review	session,	since	you	want	to	motivate	students
to	pay	attention	to	the	entire	review,	taking	supplemental	notes	the	entire	time.

Bell-work	and	Attendance	[5	minutes]

Class	Discussion	(if	needed)	[10	minutes]

1.	 If	grades	are	low,	invite	the	class	to	a	discussion	of	what	can	be	improved.	Begin	with
student	complaints	and	suggestions	to	build	student	buy-in.	Ask	students:

how	they	felt	they	were	going	to	do	before	the	test
what	surprised	them	once	they	were	taking	the	test
what	they	felt	worked	in	the	first	unit	(lessons,	review	strategies,	assignments)
what	do	they	think	they	want	to	change	for	the	second	unit

2.	 Once	you	feel	that	a	dialogue	has	been	established,	validate	students’	feelings,	then
challenge	them	(e.g.	AP	courses	are	stressful,	but	this	is	good	practice	for	college,
where	the	pace	is	faster	and	professors	don’t	give	personalized	instruction).

Lesson	7.00:	Test	Review	&	Reteach

418

Test	Review	and	Reteach	[30	minutes]

1.	 Walk	the	students	through	each	question	on	the	test,	glossing	over	questions	that
everyone	answered	correctly.

i.	 You	can	ask	for	students	to	volunteer	answers,	or	call	on	students	randomly.	Make
sure	that	students	explain	their	logic	when	they	answer.	If	a	student	gives	an
incorrect	answer,	the	explanation	will	tell	you	what	you	need	to	re-teach	or	clarify.

ii.	 Do	not	skip	questions	that	everyone	answered	correctly,	but	do	not	spend	more
than	the	time	it	takes	to	read	the	question,	and	congratulate	students’	correct
answers.

2.	 Project	a	copy	of	each	question	as	you	review—this	will	help	students	recall	the
question/process	the	information.

3.	 Make	sure	that	students	are	taking	notes	during	the	re-teach,	reminding	students	that
for	homework,	they	will	have	an	opportunity	to	win	back	some	of	the	points	on	their
exam.

4.	 For	Section	II	questions,	select	a	sample	of	student	work	(with	any	identifying
information	obscured),	and	work	through	the	answer	together	as	a	class.

Check	student	notes	and	return	tests	[5	minutes]

At	the	end	of	class,	check	student	notes,	and	return	the	tests	in	hard	copy	form	if	applicable.

Accommodation	and	Differentiation
Encourage	advanced	students	to	take	on	additional	programming	challenges.	One	easy	way
to	do	this	is	to	assign	Programming	Projects	from	the	blue	pages	at	the	end	of	each	Chapter.

If	you	have	a	few	students	that	are	struggling	with	the	class,	choose	these	students	to	create
your	classroom	posters	after	school	or	for	extra	credit.

Forum	discussion
Lesson	7.00	Test	Review	&	Reteach	(TEALS	Discourse	account	required)

Lesson	7.00:	Test	Review	&	Reteach

419

http://forums.tealsk12.org/c/unit-7/7-00-test-review-reteach

Lesson	7.01	—	Searching	Algorithms

Overview

Objectives	—	Students	will	be	able	to…

Compare	and	contrast	the	different	search	algorithms.

Assessments	—	Students	will…

Complete	some	short-answer	questions.

Homework	—	Students	will…

Read	BJP	13.1	“Sorting.”
Complete	self-check	questions	#4-6	and	exercises	#1-3

Materials	&	Prep
Projector	and	computer
Whiteboard	and	markers
Classroom	copies	of	WS	7.1
CS	Unplugged	Activity:	Searching	Algorithms	(http://csunplugged.org/searching-
algorithms/)
Classroom	copies	of	Battleship	1A,	1A’,	1B,	1B’,	2A,	2A’,	2B,	2B’

Included	in	the	CS	Unplugged	activity
10-15	slips	of	paper	with	different	integers	printed	on	them	(1	integer	per	paper)
Individually	wrapped	small	candies
Student	pair	assignments

Pacing	Guide

Lesson	7.01:	Searching	Algorithms

420

https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit7/WS%207.1.docx
http://csunplugged.org/searching-algorithms/

Section Total	Time

Bell-work	and	attendance 5min

Intro	&	demonstration 10min

Student	activity	1:	Battleship	Linear	Searching 15min

Student	activity	2:	Battleship	Binary	Searching 15min

Worksheet	completion/whole	group	discussion 10min

Procedure
Hook	your	students	by	placing	the	bowl	of	candy	somewhere	visible.	Before	the	introductory
lecture,	announce	that	today’s	class	is	a	“game	day,”	and	students	will	spend	their	time
investigating	computer	algorithms	by	playing	Battleship.

Bell-work	and	Attendance	[5	minutes]

Intro	&	Demonstration	[10	minutes]

1.	 Begin	with	a	lecture/discussion	about	search	algorithms.

2.	 Computers	are	useful	because	they	can	manage	large	collections	of	data	quickly	and
easily.	Ask	students	to	give	some	examples	about	how	large	collections	of	information
are	managed	by	computers.

Examples:	Data	about	items	for	sale	are	accessed	as	bar	codes,	schools	store	data
about	students,	which	can	be	accessed	by	student	name,	ID	number,	or	grade	level,
weathermen	store	historical	and	current	data	about	atmospheric	conditions,	etc.

3.	 Large	collections	of	data	aren’t	manageable	unless	we	are	able	to	search	for	a
particular	data	point	(datum).

Example:	When	you	search	the	internet,	you’re	searching	for	a	single	keyword	(or
phrase)	called	a	“search	key”	within	a	particular	webpage	(or	set	of	webpages).

4.	 Even	though	computers	work	very	quickly,	when	we	deal	with	searching	large	datasets,
we	need	to	use	algorithms	that	are	quick	to	use.	A	difference	of	a	second	or	two	is
actually	quite	a	lot	when	you	think	about	how	many	times	a	day	we	use	searches.

Using	your	phone,	the	class	clock,	a	watch,	stopwatch,	or	your	computer,
demonstrate	for	the	class	what	3	seconds	feels	like.	Ask	students	to	imagine	each
websearch	taking	that	long.

Lesson	7.01:	Searching	Algorithms

421

Demonstrate	10	seconds,	and	ask	students	to	imagine	what	would	happen	in	a
grocery	store	if	each	item	scanned	took	10	seconds	for	the	price	look-up.	Ask	for
estimates	on	how	long	it	would	take	a	single	family	to	check	out	groceries	for	the
week,	and	have	students	offer	predictions	as	to	how	this	would	affect	business	and
consumer	experience	in	the	store.

5.	 When	we	decide	as	program	designers	which	searching	or	sorting	algorithms	to	use,	we
factor	in:

i.	 The	size	of	the	data	array
ii.	 The	space	efficiency	of	the	algorithm	(how	much	memory	it	uses)
iii.	 Run-time	efficiency	(how	fast	it	executes)

6.	 DEMONSTRATION:	Using	the	CS	Unplugged	guide	“Introductory	Activity,”	get	your
students	thinking	about	the	process	of	and	relationship	between	searching	and	sorting
data.	Use	the	introductory	activity	to	introduce	the	Battleship	games.

Student	Activity	1:	Battleship	Linear	Searching	[15	minutes]

1.	 On	the	projector	or	the	board,	review	the	rules	for	Battleships	–	A	Linear	Searching
Game	from	the	CS	Unplugged	activity.	Distribute	sheets	1A	and	1B	to	student	pairs
(face	down	so	students	don’t	see	each	other’s	papers).

2.	 Distribute	WS	7.1	so	students	can	answer	questions	as	they	play	the	Battleship	games.

3.	 Give	students	≈15	minutes	to	play	the	Battleship	game	and	answer	the	corresponding
questions	on	their	worksheets.	Students	that	complete	the	game	with	enough	time	to	do
a	second	round	should	receive	1A’	and	1B’.	Be	sure	to	pace	your	students	by
announcing	5	minutes	before	transition.

Student	Activity	2:	Battleship	Binary	Searching	[15
minutes]

1.	 Using	the	CS	Unplugged	guide	for	Battleships	–	A	Binary	Searching	Game,	explain	the
updated	rules	for	this	game.	Distribute	sheets	2A	and	2B	to	student	pairs	(face	down).

2.	 Remind	students	to	answer	the	questions	on	their	worksheets.

3.	 Give	students	≈15	minutes	to	complete	the	game	and	answer	their	worksheets,	then
call	the	class	together	for	a	whole	group	discussion	of	their	answers.	Students	that
complete	the	game	with	enough	time	to	do	a	second	round	should	receive	2A’	and	2B’.

Worksheet	Completion/Whole-Group	Discussion	[10
minutes]

Lesson	7.01:	Searching	Algorithms

422

Discuss	the	worksheet	questions	as	a	class,	assessing	student	understanding	and	re-
teaching	as	needed.

Accommodation	and	Differentiation
To	ensure	that	students	understand	the	assignment,	read	the	questions	on	WS	7.1	before
students	begin	the	activity.

Help	students	with	metacognition	by	checking	in	with	student	pairs	during	the	activities.	Ask
them	to	explain	their	decision	making	process	to	you,	and	if	they	are	having	trouble
articulating	their	algorithms,	ask	them	to	explain	one	decision	at	a	time.

Whenever	possible,	you	should	encourage	students	to	do	2	rounds	of	Battleship	for	each
search	algorithm.	This	will	allow	students	to	track	their	own	learning.

If	your	students	are	advancing	through	the	course	quickly	and	easily,	you	can	augment	this
unit	by	having	students	write	code	to	implement	sequential	or	binary	search.	Assign	further
reading	in	the	textbook	(the	latter	½	of	Chapter	13),	and	discuss	with	students	how	they	can
implement	code	that	operate	like	the	processes	explored	during	class.

Teacher	Prior	CS	Knowledge
A	binary	search	can	be	written	using	iteration,	but	binary	search	lends	itself	to	well	to
recursion.	At	this	point	in	the	curriculum,	students	have	not	learned	recursion.	You	can
revisit	the	binary	search	algorithm	after	introducing	recursion.

Big-O	notation	is	not	part	of	the	AP	CS	A	exam.	However,	some	method	of	denoting
relative	size,	whether	it	be	time	or	memory	usage,	needs	to	be	introduced.	You	can	use
big-O	notation	or	invent	one	your	own.

The	execution	time	of	a	linear	search	is	n²	while	the	execution	time	of	binary	search	is
n·log (n).	It	is	not	necessary	for	students	to	fully	understand	logarithms	in	order	to
understand	that	binary	search	is	faster	than	linear	search	for	large	values	of	n.

Video
BJP	13-1,	Binary	Search
http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c13-1

2

Lesson	7.01:	Searching	Algorithms

423

http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c13-1

CSE	143,	Binary	Search	(1:57–12:41)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=67aa1877-adc1-41d9-
9bb6-1621cfa8a99e&start=107

Forum	discussion
Lesson	7.01	Searching	Algorithms	(TEALS	Discourse	account	required)

Lesson	7.01:	Searching	Algorithms

424

https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=67aa1877-adc1-41d9-9bb6-1621cfa8a99e&start=107
http://forums.tealsk12.org/c/unit-7/7-01-searching-algorithms

Lesson	7.02	—	Sorting	Algorithms

Overview

Objectives	—	Students	will	be	able	to…

Compare	and	contrast	different	sorting	methods	and	evaluate	their	relative	speed	and
efficiency.

Assessments	—	Students	will…

Complete	some	short	answer	questions	on	worksheets

Homework	—	Students	will…

Read	BJP	13.1	“Shuffling.”	(Check	Differentiation	for	advanced	homework
assignment	and	alternate	classroom	activities)

Materials	&	Prep
Projector	and	computer
Whiteboard	and	markers
CS	Unplugged	Activity:	Sorting	Algorithms	(http://csunplugged.org/sorting-algorithms)
Balance	scales	(one	for	each	group	of	students)
Classroom	copies	of	worksheet	activities	(included	in	CS	Unplugged	Activity)
Sets	of	8	containers	of	equal	size	but	different	weights	(one	for	each	group)
Student	pair/group	assignments

Your	physics,	mathematics,	or	chemistry	teacher	may	have	weight	sets	and	scales	that	you
can	use	for	this	lesson.	If	you	do	not	have	weight	sets,	using	prescription	bottles,	M&M	Mini
containers,	or	old	film	canisters	filled	with	different	amounts	of	sand	will	also	work.	If	you	do
not	have	time	to	collect	entire	sets	of	these	items,	placing	pennies,	beans,	or	sand	in	sealed
paper	lunch	bags	will	work	in	a	pinch	(warning:	this	can	get	messy	if	your	students	aren’t
careful!).	It’s	important	to	choose	opaque	containers	so	students	don’t	take	the	shortcut	of
eyeballing	the	weights	instead	of	using	the	scale.

If	you	cannot	find	balance	scales,	directions	on	how	to	make	a	set	can	be	found	on	these
websites:

Lesson	7.02:	Sorting	Algorithms

425

http://csunplugged.org/sorting-algorithms

https://kriegerscience.wordpress.com/2011/09/28/how-to-make-a-set-of-weighing-
scales/
http://www.wikihow.com/Make-a-Balance-Scale-for-Kids

Pacing	Guide:	Day	1

Section Total	Time

Bell-work	and	attendance 5min

Introduction 10min

Student	activity	1:	Sorting	Weights 35min

Pacing	Guide:	Day	2

Section Total	Time

Introduction	&	Setup 5min

Student	activity	2:	Divide	and	Conquer 30min

Whole	group	discussion	&	code	demo 10min

Procedure
Hook	your	students	by	placing	the	materials	for	the	lesson	out	around	the	room.

Bell-work	and	Attendance	[5	minutes]

Introduction	[10	minutes]

1.	 Lead	a	class	discussion	about	why	it	would	be	important	to	sort	data:

Ask	students	which	searching	method	went	faster	yesterday	(binary	search),	and
what	a	prerequisite	for	this	type	of	search	was	(array	needs	to	be	ordered/sorted).

Ask	for	additional	examples	of	when	it	might	be	important	to	sort	data.	(Sorting
songs	in	iTunes,	sorting	homework	assignment	files	on	your	home	computer,
sorting	goods	in	a	store	by	location,	price,	or	type,	etc.)

Student	Activity	1:	Sorting	Weights	[35	minutes]

Lesson	7.02:	Sorting	Algorithms

426

https://kriegerscience.wordpress.com/2011/09/28/how-to-make-a-set-of-weighing-scales/
http://www.wikihow.com/Make-a-Balance-Scale-for-Kids

1.	 Distribute	worksheets	for	“Sorting	Weights”	to	student	pairs	or	groups.

2.	 Review	the	directions	with	the	class,	and	distribute	materials.

If	your	class	is	not	familiar	with	how	to	use	the	scales,	take	a	few	minutes	to
demonstrate	the	proper	way	to	read	the	scales	and	record	the	weight	data.

Be	sure	to	remind	students	to	count	how	many	comparisons	they	make	during	the
activity!

Make	the	“extra	for	experts”	question	mandatory.

3.	 Give	students	≈35	minutes	to	complete	this	activity—they	will	need	to	make	28
comparisons	for	this	exercise.

DAY	2

Student	Activity	2:	Divide	and	Conquer	[30	minutes]

1.	 Briefly	review	the	next	activity	for	the	“Divide	and	Conquer”	activity.

Point	out	to	students	that	they	must	try	out	the	additional	sorting	methods	on	the
last	page	(insertion	sort	or	bubble	sort).

Remind	students	to	keep	track	of	how	many	comparisons	they	make	for	each	type
of	sort.

2.	 Give	students	~30	minutes	to	complete	this	activity,	then	call	the	class	together	for	a
whole	group	discussion	of	their	answers.

Whole	Group	Discussion	&	Code	Demonstration	[10
minutes]

1.	 Discuss	the	worksheet	questions	as	a	class;	ask	students:

what	sorting	algorithms	were	the	quickest

which	sorting	algorithms	should	use	more	memory

which	sorting	algorithms	they’ve	used	in	their	lives,	and	what	those	situations	were.
(Some	examples	to	get	them	started	include	sorting	notes	or	homework	into	date
order,	organizing	shuffled	cards,	etc.)

Lesson	7.02:	Sorting	Algorithms

427

2.	 The	AP	subset	does	not	include	specific	sorting	code,	but	students	are	required	to
conceptually	understand	the	mechanisms	used	in	each	of	the	sorting	algorithms.
Students	should	be	familiar	with	the	best-	and	worst-case	scenarios	for	each	of	the
sorting	algorithms.	Give	the	students	a	summary	of	this	information	by	having	students
copy	the	notes	below,	or	by	offering	this	information	as	a	handout.

SORTING	ALGORITHMS

Selection	Sort

For	an	array	of	n	elements,	the	array	is	sorted	after	n-1	passes.	After	the	ith	pass,	the	first	i
elements	are	in	their	sorted	position.

The	steps	are:

1.	 The	algorithm	divides	the	input	list	into	two	parts:	the	sublist	of	items	already	sorted,
which	is	built	up	from	left	to	right	at	the	front	(left)	of	the	list,	and	the	sublist	of	items
remaining	to	be	sorted	that	occupy	the	rest	of	the	list.

2.	 Initially,	the	sorted	sublist	is	empty	and	the	unsorted	sublist	is	the	entire	input	list.

3.	 The	algorithm	proceeds	by	finding	the	smallest	(or	largest,	depending	on	sorting	order)
element	in	the	unsorted	sublist,	exchanging	it	with	the	leftmost	unsorted	element
(putting	it	in	sorted	order),	and	moving	the	sublist	boundaries	one	element	to	the	right.

A	useful	animation	of	selection	sort	can	be	found	on	Wikipedia	here:
(http://tinyurl.com/muo8ycd).

Insertion	Sort

For	an	array	of	i	elements,	the	array	is	sorted	after	n-1	passes.	After	the	ith	pass,	the	first	i
elements	are	sorted	with	respect	to	each	other,	but	not	in	their	final	sorted	positions.	The
worst-case	for	insertion	sort	is	when	the	array	is	initially	sorted	in	reverse	order	(because
sorting	takes	the	most	number	of	comparisons/moves).	The	best-case	scenario	is	if	the
array	is	initially	sorted	in	increasing	order	(because	no	elements	will	have	to	be	moved).

The	steps	are:

1.	 Insertion	sort	iterates,	consuming	one	input	element	each	repetition,	and	growing	a
sorted	output	list.

2.	 Each	iteration,	insertion	sort	removes	one	element	from	the	input	data,	finds	the	location
it	belongs	within	the	sorted	list,	and	inserts	it	there.

3.	 It	repeats	until	no	input	elements	remain.

Lesson	7.02:	Sorting	Algorithms

428

http://tinyurl.com/muo8ycd

A	useful	animation	of	insertion	sort	can	be	found	on	Wikipedia	here:
(http://tinyurl.com/ldw8bj6).

Accommodation	and	Differentiation
If	your	students	need	more	time	to	complete	the	exercise,	have	them	skip	the	bubblesearch
exercise.

Have	several	shuffled	decks	of	cards	available	for	students	to	sort	if	they	finish	the	exercise
early.	You	can	time	student	sorting	and	turn	it	into	a	competition	if	you	need	to	offer	extra
engagement/motivation.

Encourage	students	to	write	the	algorithms	for	different	sorting	methods	in	their	own	words.
If	a	student	comes	up	with	a	particularly	well-worded	example,	encourage	them	to	turn	it	into
a	poster	or	handout	for	the	entire	class	to	use.

If	you	have	enough	time,	and	your	students	are	following	along	well,	have	your	students
practice	implementing	sorting	code.	Use	AP	questions	(like	#17	in	the	2009	exam)	to	give
students	practice	at	recognizing	a	right-to-left	selection	sort	and	choosing	the	correct	inner
for	loop.

Optional	Lesson

An	alternative	lesson	plan	is	outlined	here.	This	lesson	examines	the	sorting	methods	in
greater	detail,	and	takes	at	least	2	class	periods	to	conduct.	If	you	are	pressed	for	time,	you
should	not	use	these	plans	since	they	take	more	time	to	cover,	and	address	the	material	in	a
more	challenging	way	(though	the	activities	are	cleverly	disguised	as	fun)!

1.	 Introduce	these	activities	in	lieu	of	the	ones	mentioned	in	the	lesson	plan	above.

Bring	8	students	to	front	of	classroom,	give	each	a	piece	of	paper	with	a	unique
simple	number	on	it,	which	they	hold	so	class	can	see.

Pick	“SortMasters”	from	the	remainder	of	the	class	to	give	the	8	students
instructions	about	how	to	get	into	smallest-to-biggest	order.

Allow	the	first	two	SortMasters	to	give	instructions	without	commentary,	unless	it
looks	like	they	are	explicitly	using	selection	sort	(move	lowest/biggest	number	to
one	end)	or	insertion	sort	(move	a	number	to	correct	position)	or	bubble	sort	(A	and
B	are	in	wrong	order,	so	swap),	in	which	case	name	what	they	are	doing	and
encourage	them	to	be	explicit	in	describing	their	instructions.

Lesson	7.02:	Sorting	Algorithms

429

http://tinyurl.com/ldw8bj6

In	this	first	activity,	do	not	worry	about	explicit	comparisons	of	two	numbers	at	a
time,	SortMasters	can	pick	smallest/largest	directly.

If	the	first	two	SortMasters	have	not	shown	insertion	or	selection	sort,	tell	the	class
that	they’re	going	to	look	at	this	more	systematically/algorithmically	now.

If	selection	sort	not	covered–	ask	a	new	SortMaster	who	should	go	first?	Who
should	go	second	(selection	sort)?

If	insertion	sort	not	covered	–	ask	a	new	SortMaster	to	start	with	asking
whether	second	person	should	go	before	or	after	first?	Where	third	person
should	go	relative	to	first	and	second?

Students	back	to	seats;	ask	for	a	comparison	of	selection	vs.	insertion	sort:

Selection:	Who	goes	in	the	next	position?

Insertion:	Into	which	position	does	the	next	person	go?

2.	 Activity	1A:	Introduce	idea	that	while	SortMasters	could	eyeball	everyone	to	see	who
goes	next,	computers	can	only	compare	two	things	at	a	time.

Distribute	balances	and	weights.	Instruct	each	team	to	start	with	weights	1-8	in
order.	Activity	1A	is	essentially	same	as	Activity	1,	except	you	explicitly	tell	students
to	use	the	idea	of	Selection	Sort	when	ordering	their	weights.

Students	discuss	questions	in	their	groups,	answering	questions	including	number
of	comparisons.

3.	 Activity	1B:	Students	then	move	on	to	Activity	1B,	same	as	1A,	except	examining
insertion	sort.	Students	should	be	explicitly	told	to	reset	their	weights	in	initial	order.

As	a	trick,	set	up	initial	weights	for	most	groups	in	random	order,	but	at	least	one
group	should	have	initial	positions	in	ascending	weight	order,	and	another	with
weights	in	descending	weight	order.

Come	back	to	class	discussion.	Expect	groups	to	have	similar	numbers	of
compares	for	selection	sort,	but	widely	different	numbers	for	insertion	sort.

As	a	“grand	reveal,”	announce	the	different	start	conditions,	so	students	will
discover	this	significant	behavior	difference	between	selection	and	insertion.

Teacher	Prior	CS	Knowledge

Lesson	7.02:	Sorting	Algorithms

430

Many	students	learn	bubble	sort	as	one	of	the	first	sorting	algorithms.	Given	bubble
sorts	large	amount	of	swapping	in	the	worst	case,	it	is	a	terrible	sorting	algorithm.
However,	if	you	ask	students	to	form	a	line	creating	a	random	list	and	then	to	get	in	size
place	order,	the	algorithm	they	usually	use	is	some	sort	of	bubble	sort	where	each
student	is	compared	to	the	student	next	to	them.

When	given	a	deck	of	random	cards	and	asked	to	sort	them,	students	usually	come	up
with	either	selection	sort	or	insertion	sort.	However,	the	selectin	sort	used	to	sort	the
random	cards	is	different	from	the	actual	algorithm	used.	Selection	sort	swaps	the	next
smallest	(or	largest)	item	in	the	list.	However,	when	students	select	the	next	smallest
item,	they	insert	it	in	the	cards	already	sorted	and	shift	the	remaining	cards	down.	You
can	implement	a	selection	sort	in	this	manner,	it	takes	a	much	larger	number	of	swaps.

Misconceptions
Selection	sort	requires	the	use	of	indexes	in	an	array	in	order	to	keep	track	of	the	next
lowest	(or	highest)	item.	This	requires	students	to	think	in	one	more	level	of	abstraction.
Often	times	students	will	start	with	saving	the	number	and	then	realize	they	need	the	index.
What	they	end	up	with	is	two	variables,	one	for	the	saved	number	and	one	for	the	index.

Video
BJP	13-2,	Sorting
http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c13-2

CSE	143,	Bubble	Sort	(optional)	(8:34–13:38)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=1fdd364a-4d01-49cf-
96b3-ce2f67b77dcf&start=514

CSE	143,	Insertion	Sort	(13:39–16:13)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=1fdd364a-4d01-49cf-
96b3-ce2f67b77dcf&start=819

CSE	143,	Selection	Sort	(16:14–17:21)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=1fdd364a-4d01-49cf-
96b3-ce2f67b77dcf&start=974

Forum	discussion
Lesson	7.02	Sorting	Algorithms	(TEALS	Discourse	account	required)

Lesson	7.02:	Sorting	Algorithms

431

http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c13-2
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=1fdd364a-4d01-49cf-96b3-ce2f67b77dcf&start=514
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=1fdd364a-4d01-49cf-96b3-ce2f67b77dcf&start=819
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=1fdd364a-4d01-49cf-96b3-ce2f67b77dcf&start=974
http://forums.tealsk12.org/c/unit-7/7-02-sorting-algorithms

Lesson	7.02:	Sorting	Algorithms

432

Lesson	7.03	—	Elevens	Lab

Overview

Objectives	—	Students	will	be	able	to…

Complete	a	long-form	lab,	demonstrating	effective	use	of	object-oriented	program
design,	program	implementation	and	analysis,	and	standard	data	structures	and
algorithms.

Assessments	—	Students	will…

Complete	the	Elevens	Lab

Homework	—	Students	will…

A	list	of	homework	assignments	is	provided	below.

Materials	&	Prep
Elevens	Lab	Teacher’s	Guide
Classroom	copies	of	the	Elevens	Lab	Student	Guide
Associated	Elevens	Lab	Activity	Starter	Code

Read	through	the	Teacher,	Student,	and	Extension	guides	ahead	of	time	to	familiarize
yourself	with	the	parts	of	this	long-form	lab.	Using	the	guides,	complete	the	lab	on	your	own
to	spot	possible	challenges	for	your	students.	Since	later	starter	code	packages	include
answers	to	the	earlier	sections	of	the	lab,	we	recommend	that	you	do	not	upload	all	student
files	onto	computer	desktops	for	student	access.	If	possible,	email	ActivityN	Starter	Code	to
students	the	day	of	the	lab.	Otherwise,	upload	files	manually	to	each	desktop	before	each
class	period.

Pacing	Guide:	Day	1

Lesson	7.03:	Elevens	Lab	(16	Days)

433

Section Total	Time

Student	Activity	1 Full	class

Homework:
Read	section	13.3
Complete	self-check	questions	#16–21,	23–24

TONIGHT

Pacing	Guide:	Day	2

Section Total	Time

Student	Activity	2 Full	class

Homework:
Read	section	13.4
Complete	self-check	questions	#27-30

TONIGHT

Pacing	Guide:	Day	3

Section Total	Time

Student	Activity	2,	continued Full	class

Homework:
Summarize	notes	and	fill	in	missing	days
for	notebook	check	tomorrow.

TONIGHT

Pacing	Guide:	Day	4

Section Total	Time

Student	Activity	3
See	notes	for	leading	classroom	discussion	below Full	class

Notebook	Checks During	class

Homework:
Outline	Chapter	13 TONIGHT

Pacing	Guide:	Day	5

Lesson	7.03:	Elevens	Lab	(16	Days)

434

Section Total	Time

Student	Activity	3,	continued Full	class

Notebook	Checks During	class

Homework:
Read	and	highlight	Chapter	8	of	Barron’s
(OPTIONAL)

TONIGHT

Pacing	Guide:	Day	6

Section Total	Time

Student	Activity	4 Full	class

Grade	student	outlines During	class

Homework:
Take	the	Chapter	8	exam	in	Barron’s	review	book.
Grade	your	answers.	(OPTIONAL)

TONIGHT

Pacing	Guide:	Day	7

Section Total	Time

Student	Activity	5	(OPTIONAL) Full	class

Check	Barron’s	Review	books	for
highlighting,	note	taking,	and	practice	test
completion	and	correction.	(OPTIONAL)

During	class

Pacing	Guide:	Day	8

Section Total	Time

Student	Activity	5,	continued	(OPTIONAL) Full	class

Check	Barron’s	Review	books	for
highlighting,	note	taking,	and	practice	test
completion	and	correction.	(OPTIONAL)

During	class

Pacing	Guide:	Day	9

Lesson	7.03:	Elevens	Lab	(16	Days)

435

Section Total	Time

**Student	Activity	6 Full	class

Check	Barron’s	Review	books	for
highlighting,	note	taking,	and	practice	test
completion	and	correction.	(OPTIONAL)

During	class

Homework:
Correct	all	homework	&	classwork
assignments	for	resubmission	and	grading

TONIGHT

Pacing	Guide:	Day	10

Section Total	Time

Student	Activity	7 Full	class

Homework:
Correct	all	homework	&	classwork
assignments	for	resubmission	and	grading

TONIGHT

Pacing	Guide:	Day	11

Section Total	Time

Student	Activity	8 Full	class

Re-grade	corrected	assignments During	class

Pacing	Guide:	Day	12

Section Total	Time

Student	Activity	9 Full	class

Re-grade	corrected	assignments During	class

Pacing	Guide:	Day	13

Lesson	7.03:	Elevens	Lab	(16	Days)

436

Section Total	Time

Student	Activity	9,	continued Full	class

Re-grade	corrected	assignments During	class

Homework:
Submit	5	questions	via	electronic	survey	for	test	review TONIGHT

Pacing	Guide:	Day	14

Section Total	Time

Student	Activity	10	(OPTIONAL) Full	class

Re-grade	corrected	assignments During	class

Pacing	Guide:	Day	15

Section Total	Time

Student	Activity	11	(OPTIONAL) Full	class

Pacing	Guide:	Day	16

Section Total	Time

Student	Activity	11	(OPTIONAL) Full	class

Procedure
All	guides,	sample	code,	answer	code,	and	example	code	may	be	found	in	the	folder
“Milestone	3	Elevens	Lab.”

1.	 To	help	students	start	the	lab	smoothly,	start	Activity	1	as	a	whole	group.

2.	 Encourage	students	to	use	their	Tricky	Code	Cheat	Sheets,	4	Commandments	of
Scope,	notebooks,	textbooks,	classroom	posters,	and	homework	assignments.

3.	 Offer	occasional	time-checks	to	help	keep	students	on	pace.

4.	 Grade	notebooks	and	review	books	in	between	helping	students	so	students	can	keep
notebooks	for	homework	and	studying	in	the	evenings.

Lesson	7.03:	Elevens	Lab	(16	Days)

437

About	Barron’s

Barron’s	is	an	AP	CS	A	review	book	that	some	schools	provide	students.	If	your	school
doesn’t	provide	Barron’s	there	are	many	alternative	homework	assignments	that	can	be
found	at	codingbat.com/java	or	practice-it.

Alternatively,	you	can	save	time	spent	on	the	lab	by	checking	activities	as	homework.

Notes	for	Introduction	Lecture	for	Activity	3

1.	 The	teacher’s	guide	recommends	leading	the	activity	with	a	discussion	on	what	makes
a	good	shuffling	algorithm.

The	Collections	class	has	a	method	called	shuffle	that	accepts	a	list	as	its
parameter,	and	rearranges	its	elements	randomly:

Collections.shuffle(list);				//	Where	list	is	the	name	of	the	array	you	want

	to	shuffle.

Ask	students	what		System.out.println		method	they	could	call	to	get	the	top	card
(or	first	element)	of	the	array.

System.out.println("Top	card	=	"	+	list.get(0));

Accommodation	and	Differentiation
Each	day	that	you	begin	the	lab,	start	with	a	quick	survey	of	student	concerns	and
questions.	As	needed,	allow	students	to	pair	up	to	help	each	other	with	reading
comprehension	(but	remind	students	that	they	each	must	submit	their	own	code).

Adaptations	for	group	work	can	be	found	on	page	17	of	the	Teacher’s	guide.

In	ELL	classrooms,	read	all	directions	aloud	before	breaking	into	individual	practice,	and
allow	up	to	twice	the	amount	of	time	for	completion	of	the	lab.

To	save	time	on	the	lab,	skip	lessons	marked	as	optional.

Encourage	advanced	students	to	work	through	the	optional	lab	activities.	Otherwise,	these
students	can	serve	as	student	TAs,	helping	others	when	they	get	stuck	on	code.	Remind
student	TAs	not	to	give	answers	directly,	but	to	ask	leading	questions	and	modeling
solutions	to	similar	problems.

Lesson	7.03:	Elevens	Lab	(16	Days)

438

Forum	discussion
Lesson	7.03	Elevens	Lab	(TEALS	Discourse	account	required)

Lesson	7.03:	Elevens	Lab	(16	Days)

439

http://forums.tealsk12.org/c/unit-7/7-0301-0314-elevens-lab

Lesson	7.04	—	Review

Overview

Objectives	—	Students	will	be	able	to…

Identify	weaknesses	in	their	Unit	7	knowledge.

Assessments	—	Students	will…

Create	a	personalized	list	of	review	topics	to	guide	tonight’s	study	session.

Homework	—	Students	will…

Study	for	tomorrow’s	test	using	targeted	review	list

Materials	&	Prep
Projector	and	computer
Whiteboard	and	marker
Results	from	electronic	survey	of	review	topics

Once	students	have	submitted	their	review	requests,	assemble	those	topics	into	categories
and	prepare	to	re-teach	the	topics	as	needed.

Pacing	Guide

Section Total	Time

Bell-work	and	attendance 5min

Review	of	student	questions 40min

Check	student	study	lists 5min

Procedure

Bell-work	and	Attendance	[5	minutes]

Lesson	7.04:	Review

440

Review	of	Student	Questions	[30	minutes]

1.	 Clearly	indicate	that	you	expect	all	students	to	have	a	list	of	review	topics	to	study	this
evening.	Periodically	remind	students	that	this	list	will	be	checked	at	the	end	of	class.

2.	 Begin	with	a	review	of	student-submitted	questions	before	reviewing	the	practice
questions.

3.	 Finally,	work	through	the	various	review	topics,	prioritizing	questions	that	popped	up	the
most.

Some	questions	you	may	address	while	working	through	the	sample	test.

Be	ready	for	additional	questions	to	pop	up	as	you	go.	Save	yourself	the	work	and
use	old	homework	questions	and	student-generated	test	questions	as	examples	to
work	through.

4.	 Use	a	combination	of	group-solving	questions	on	the	whiteboard,	think-pair-share,	and
timed-response	as	review	strategies.

5.	 After	you’ve	completed	reviewing	an	idea,	remind	the	class	that	they	should	write	down
that	topic	if	they	feel	they	still	have	to	review	it	tonight.

Check	Student	Study	Lists	[5	minutes]

Spend	the	last	5	minutes	of	class	checking	each	student’s	review	topic	list	as	a	class
participation	grade.

Forum	discussion
Lesson	7.04	Unit	7	Review	(TEALS	Discourse	account	required)

Lesson	7.04:	Review

441

http://forums.tealsk12.org/c/unit-7/7-04-review

Test	6	Guide
As	written,	the	test	for	this	unit	is	probably	too	long	for	students	to	complete	in	one	class
period.	Extra	questions	have	been	included	so	you	can:

1.	 Pick	and	choose	which	questions	will	appropriately	assess	your	students.

2.	 Create	different	versions	of	the	test	(if	you’ve	noticed	that	cheating	is	a	problem).

3.	 Simulate	an	authentic	AP	test	experience.

When	modifying	the	test	to	suit	your	students,	don’t	forget	to:

1.	 Change	the	headings	on	Section	I	&	II	to	reflect	the	actual	number	of	questions.

2.	 Change	the	headings	on	Section	I	&	II	to	reflect	the	correct	percentages	of	their	total
test	score.	The	AP	exam	weights	Section	I	&	II	at	50%	of	the	overall	score,	each.

3.	 Adjust	the	test	pacing	for	your	class	period’s	time	span.	The	ultimate	goal	is	to	work
your	students	up	to	a	pace	of	90	seconds	per	Section	I	question,	and	26	minutes	per
Section	II	question	(including	time	for	checking).

4.	 Keep	track	of	which	questions	you	remove	from	the	test	so	you	can	use	them	during
Unit	9	test	prep/review.

Even	in	the	final	(reduced-size)	version,	the	test	will	be	very	long.	Be	sure	to	take	this	into
account	when	photocopying	versions	of	the	test.	If	you	teach	multiple	sections	of	this	class,
you	may	want	to	have	students	use	bubble-in	sheets	so	you	can	erase	student	markings
and	re-use	test	packets	between	class	periods.

Forum	discussion
Test	6	Guide	(TEALS	Discourse	account	required)

Test	6	Guide

442

http://forums.tealsk12.org/c/unit-7/7-99-unit-7-test

Lesson	8.00	—	Test	Review	&	Reteach

Overview

Objectives	—	Students	will	be	able	to…

Re-learn	or	strengthen	content	knowledge	and	skills	from	Unit	7.

Assessments	—	Students	will…

Re-submit	test	answers	with	updated	corrections	for	partial	or	full	credit
Credit	depends	on	instructor	preference

Homework	—	Students	will…

Read	BJP	12.1	up	to	“Structure	of	Recursive	Solutions”
Correct	any	incorrect	test	answers	by	re-answering	on	a	separate	sheet	of	paper

To	get	back	credit,	they	must	justify	their	new	answers
Staple	new	answer	sheet	to	old	test	and	turn	in	tomorrow

Materials	&	Prep
Projector	and	computer
Whiteboard	and	markers
Corrected	student	tests
Student	grades	(posted	online,	emailed	to	students,	or	handed	back	on	paper	in	class)
Digital	copy	of	test	questions	for	projector

Pacing	Guide

Section Total	Time

Bell-work	and	attendance 5min

Class	discussion	(if	needed) 10min

Test	review	and	reteach 35min

Check	student	notes	and	return	tests 5min

Lesson	8.00:	Test	Review	&	Reteach

443

Procedure
Return	student	grades	before	class	begins	or	while	students	are	completing	the	bellwork.

Do	not	return	students’	tests	before	the	review	session,	since	you	want	to	motivate	students
to	pay	attention	to	the	entire	review,	taking	supplemental	notes	the	entire	time.

Bell-work	and	Attendance	[5	minutes]

Class	Discussion	(if	needed)	[10	minutes]

1.	 If	grades	are	low,	invite	the	class	to	a	discussion	of	what	can	be	improved.	With	your	co-
teachers	and/or	TAs	you	should	decide	how	to	shift	focus	as	the	AP	test	is	right	around
the	corner.	With	your	students,	you	should	follow	the	same	post-mortem	format	as	in
other	review	units,	but	with	the	AP	exam	in	mind.

Do	your	students	want	to	focus	on	Section	II	test	taking	strategies?

Perhaps	they	feel	they	need	to	drill	quick-response	Section	I	questions?

As	a	sanity-check,	students	should	be	reminded	that	they	only	have	1.5	minutes	to
solve	each	Section	I	question	on	the	AP.	If	they	are	note	near	this	pace,	or	if	this	is
an	unrealistic	goal	(due	to	language	and/or	reading	barriers),	decide	as	a	class	to
focus	on	test-taking	strategies	(skipping,	guessing,	process	of	elimination)	to
reduce	anxiety	and	recoup	some	potentially	lost	points.

2.	 Once	you	feel	that	a	dialogue	has	been	established,	validate	students’	feelings	then
challenge	them	(e.g.	AP	courses	are	stressful,	but	this	is	good	practice	for	college,
where	the	pace	is	faster	and	professors	don’t	give	personalized	instruction).	Students
can	get	very	discouraged	during	this	time	of	year.	Inspire	and	amuse	your	class	by
pointing	out	old	word	walls	or	assignments	(if	you	still	have	them	up),	showing	students
how	far	they	have	come	since	the	beginning	of	the	school	year.

Test	Review	and	Reteach	[30	minutes]

1.	 Walk	the	students	through	each	question	on	the	test,	glossing	over	questions	that
everyone	answered	correctly.

You	can	ask	for	students	to	volunteer	answers,	or	call	on	students	randomly.	Make
sure	that	students	explain	their	logic	when	they	answer.	If	a	student	gives	an
incorrect	answer,	the	explanation	will	tell	you	what	you	need	to	re-teach	or	clarify.

Lesson	8.00:	Test	Review	&	Reteach

444

Do	not	skip	questions	that	everyone	answered	correctly,	but	do	not	spend	more
than	the	time	it	takes	to	read	the	question,	and	congratulate	students’	correct
answers.

2.	 Project	a	copy	of	each	question	as	you	review—this	will	help	students	recall	the
question/process	the	information.

3.	 Make	sure	that	students	are	taking	notes	during	the	re-teach,	reminding	students	that
for	homework,	they	will	have	an	opportunity	to	win	back	some	of	the	points	on	their
exam.

4.	 For	Section	II	questions,	select	a	sample	of	student	work	(with	any	identifying
information	obscured),	and	work	through	the	answer	together	as	a	class.

Check	student	notes	and	return	tests	[5	minutes]

At	the	end	of	class,	check	student	notes,	and	return	the	tests	in	hard	copy	form	if	applicable.

Accommodation	and	Differentiation
Encourage	advanced	students	to	take	on	additional	programming	challenges.	One	easy	way
to	do	this	is	to	assign	Programming	Projects	from	the	blue	pages	at	the	end	of	each	Chapter.

If	you	have	a	few	students	that	are	struggling	with	the	class,	choose	these	students	to	create
your	classroom	posters	after	school	or	for	extra	credit.

Forum	discussion
Lesson	8.00	Test	Review	&	Reteach	(TEALS	Discourse	account	required)

Lesson	8.00:	Test	Review	&	Reteach

445

http://forums.tealsk12.org/c/unit-8/8-00-test-review-reteach

Lesson	8.01	—	Thinking	Recursively

Overview

Objectives	—	Students	will	be	able	to…

Define	recursion.

Assessments	—	Students	will…

Describe	recursive	methods
Compare	iterative	and	recursive	methods	during	a	class	discussion

Homework	—	Students	will…

Read	the	rest	of	BJP	12.1

Materials	&	Prep
Projector	and	computer
Whiteboard	and	markers
Bookmarks	on	each	computer	(or	URL	on	projector)	for
(http://www.softschools.com/games/logic_games/tower_of_hanoi)

You	should	familiarize	yourself	with	the	Tower	of	Hanoi	as	needed.	The	(exhaustive)
Wikipedia	article	covers	the	different	algorithms	that	may	be	used	to	solve	the	problem
(here:	http://en.wikipedia.org/wiki/Tower_of_Hanoi).	If	you	are	pressed	for	time,	you	should
read	the	introduction,	origins,	iterative	and	recursive	solutions	only.	The	story/legend
associated	with	the	puzzle	is	summarized	here:
(http://www.qef.com/oise/hanoi/hanoi01.html).

Pacing	Guide

Lesson	8.01:	Thinking	Recursively

446

http://www.softschools.com/games/logic_games/tower_of_hanoi
http://en.wikipedia.org/wiki/Tower_of_Hanoi
http://www.qef.com/oise/hanoi/hanoi01.html

Section Total	Time

Bell-work	and	attendance 5min

Activity:	Tower	of	Hanoi	Game 15min

Class	Discussion	&	Solutions 20min

Lecture 10min

Procedure
Your	hook	today	is	to	invite	students	to	play	the	Tower	of	Hanoi	game	as	soon	as	they	enter
the	classroom.	You	should	not	offer	any	clues	or	hints	as	to	why	they	are	playing	the	game;
only	supply	the	information	outlined	in	the	“Activity”	section	below.

Bell-work	and	Attendance	[5	minutes]

Activity:	Tower	of	Hanoi	Game	[15	minutes]

1.	 Have	students	navigate	to	the	Tower	of	Hanoi	game	at	the	link	listed	in	“Materials	&
Prep”.

2.	 Tell	students	that	they	have	15	minutes	to	win	the	game.

As	they	play	the	game,	they	should	take	notes	on	what	strategies	have	worked	and
which	ones	have	failed.	(Point	out	that	they	are	devising	their	own	algorithms.)

They	are	not	allowed	to	navigate	to	any	other	website.	(If	you	do	catch	students
cheating,	it’s	actually	a	bonus!	They’re	taking	the	initiative	to	learn	and	understand
an	algorithm	that	uses	recursion	J)

3.	 If	students	finish	early:

Invite	them	to	try	to	optimize	their	solution
Invite	them	to	try	the	game	using	a	larger	stack	of	rings.

4.	 After	10–15	minutes	of	play	(or	sooner,	if	you	have	a	particularly	advanced	class),	call
the	class	back	together	for	a	whole	group	discussion.

Class	Discussion	&	Solutions	[20	minutes]

1.	 Begin	the	group	discussion	with	the	following	series	of	warm-up	questions.	Use	these
soft-ball	questions	to	engage	students	who	are	usually	shy	or	quiet	in	class.

Did	you	enjoy	the	game?

Lesson	8.01:	Thinking	Recursively

447

Did	you	win/solve	the	game?
How	long	did	it	take	you	to	solve	the	game?
Have	any	of	you	ever	played	this	game	before?	Have	you	heard	of	this	game
before?

2.	 If	your	class	is	interested	in	such	things,	explain	to	them	the	history	of	the	game	and	its
initial	legend	(this	information	can	be	found	following	the	links	in	“Materials	&	Prep.”)

3.	 Ask	your	students	about	their	solutions	(or	non-solutions,	if	no	one	has	correctly	solved
the	problem	in	the	time	allotted).

What	steps	do	you	take	to	solve	the	problem?	What	does	your	algorithm	look	like?

If	students	suggest	an	iterative	solution	(for	an	example,	refer	to	the	Wikipedia
page),	point	out	that	there	is	a	faster/more	efficient	algorithm	they	can	use.

If	a	student	suggests	a	recursive	solution	(if	you	need	an	example,	check	the
Wikipedia	page),	point	out	that	this	solution	is	the	fastest	solution	to	the
problem.	In	the	world	of	computing,	that’s	a	great	thing!	But	in	the	story	about
the	Buddhist	monks,	we	probably	wouldn’t	want	to	share	this	solution	with
them.

Did	anyone	use	a	different	set	of	steps	or	rules	(heuristics)	to	solve	the	problem?

As	a	design	approach,	what	should	be	our	first	step	in	thinking	about	solving	this
solution?	(Can	we	break	the	problem	down	into	smaller	problems	that	are	easier	to
solve?)

4.	 Once	you’ve	completed	a	discussion	about	the	algorithms’	students	used,	watch	the
animation	as	a	class,	asking	students	to	point	out	what	patterns	they	see	in	the	solution.

Link	to	animation	is	here:	http://www.eisbox.net/blog/2009/04/06/tower-of-hanoi-
animation/

A	less	attractive,	but	easier	to	follow	animation	can	be	found	here:
https://www.youtube.com/channel/UCMDuzeB8MqT_-AwFGT8qQ-g/search?
query=Hanoi

Lecture	[10	minutes]

1.	 Provide	students	with	the	following	definitions:

Iteration/Iterative:	A	programming	technique	in	which	you	describe	actions	to	be
repeated	typically	using	a	loop.

Recursion/Recursive:	A	programming	technique	in	which	you	describe	actions	to
be	repeated	using	a	method	that	calls	itself.

Lesson	8.01:	Thinking	Recursively

448

http://www.eisbox.net/blog/2009/04/06/tower-of-hanoi-animation/
https://www.youtube.com/channel/UCMDuzeB8MqT_-AwFGT8qQ-g/search?query=Hanoi

2.	 Ask	students	which	algorithms	from	your	class	discussion	were	iterative,	and	which
ones	were	recursive.	You	should	see	if	students	can	come	up	with	a	“rule	of	thumb”	that
helps	them	decide	when	a	method	is	recursive	instead	of	iterative.	(The	key	is	that	the
method	will	call	itself	in	the	method	body!)

3.	 If	time	allows,	watch	the	animation	again,	and	ask	students	to	narrate	the	animation
using	recursive	pseudocode.	(Correct	answers	will	include	rules	like	“To	move	a	pile	of
height	N	from	A	to	C,	move	the	pile	of	height	N-1	from	A	to	B,	move	the	Nth	disc	from	A
to	C,	then	move	the	pile	of	height	N-1	from	B	to	C.”	This	is	a	tough	problem	to	articulate
—the	important	part	is	that	students	understand	that	breaking	the	problem	into	smaller
parts	is	the	key	to	finding	the	simplest	problem	to	solve	(next	lesson	will	discuss	the
“base	case.”)

Be	sure	to	spot	check	students	for	understanding	during	the	class	discussion	and
note-taking	session.	If	you	would	rather	assess	students	formally,	give	students	a	quick
ticket-to-leave	assignment:	have	them	hand	you	a	piece	of	paper	with	their	name	and	their
definition	of	recursion	as	they	walk	out	the	door.

Accommodation	and	Differentiation
If	students	need	additional	modeling	of	iterative	and	recursive	methods,	review	these
examples	outlined	in	the	book	chapter:

The	writeStars	program	takes	an	integer	parameter	n	and	produces	a	line	of	output	with
n	stars	on	it.	Here’s	the	iterative	solution	(you	know	it’s	iterative	because	it	uses	a	loop):

public	static	void	writeStars	(int	n)	{

				for	(int	i	=	1;	i	<=n;	i++)	{

								System.out.print("*");

				}

				System.out.println();

}

This	same	program	can	be	written	using	a	recursive	version	of	the	writeStars	method
(we	know	it’s	a	recursive	method	because	it	calls	itself	in	the	method	body):

Lesson	8.01:	Thinking	Recursively

449

public	static	void	writeStars	(int	n)	{

				if	(n==0)	{

								System.out.println();

				}	else	{

								System.out.print("*");

								writeStars(n-1);

				}

}

If	your	students	are	speeding	through	this	lesson,	ask	them	to	try	out	the	algorithms
proposed	during	the	class	discussion.	Have	students	track	how	many	moves	each	approach
takes,	and	have	your	students	explain	if	a	recursive	method	is	faster.

For	a	broader	discussion	of	self-reference	in	other	contexts	(language,	art,	and	literature)	get
students	thinking	about	terms	like	“never	again”	or	play	Carli	Simon’s	“You’re	So	Vain”
(https://youtu.be/b6UAYGxiRwU).

Teacher	Prior	CS	Knowledge
Many	problems	can	be	solved	with	either	iteration	or	recursion.	In	general,	iterative	solutions
run	faster	than	recursive	solutions	because	the	recursive	call	has	the	added	overhead	of
making	a	function	call.	In	addition,	there	is	a	memory	cost	to	each	function	call.	Many
compilers	can	optimize	certain	types	of	recursive	algorithms	like	tail	recursion	to	minimize
the	difference	in	execution	time	and	memory	usage.

Misconceptions
When	the	base	case	is	met	execution	of	the	recursive	call	ends	and	execution
continues	from	the	initial	recursive	call.	This	may	be	conceptually	true	for	tail	recursion
but	although	desirable,	not	all	recursive	calls	conform	to	this	pattern.

Common	Mistakes
Recursion	common	mistakes:
http://interactivepython.org/runestone/static/JavaReview/Recursion/rMistakes.html

Video

Lesson	8.01:	Thinking	Recursively

450

https://youtu.be/b6UAYGxiRwU
http://interactivepython.org/runestone/static/JavaReview/Recursion/rMistakes.html

BJP	12-1,	Recursive	Tracing
http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c12-1

CS	Homework	Bytes,	Recursion,	with	Maxine
https://www.youtube.com/watch?v=a2Op-yPcm-A

CSE	143,	Recursion	(6:32–32:28)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=c698c41a-6872-46d3-
9c55-87ce2ba78276&start=392

Forum	discussion
Lesson	8.01	Thinking	Recursively	(TEALS	Discourse	account	required)

Lesson	8.01:	Thinking	Recursively

451

http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c12-1
https://www.youtube.com/watch?v=a2Op-yPcm-A
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=c698c41a-6872-46d3-9c55-87ce2ba78276&start=392
http://forums.tealsk12.org/c/unit-8/8-01-thinking-recursively

Lesson	8.02	—	Writing	Recursive
Solutions

Overview

Objectives	—	Students	will	be	able	to…

Identify	recursive	methods.
Predict	the	output	(or	return	value)	of	recursive	methods.

Assessments	—	Students	will…

Evaluate	statements	and	predict	output	during	a	game	of	grudgeball

Homework	—	Students	will…

Read	BJP	12.2
Complete	self-check	questions	#5,	7-9	and	exercise	#1

Materials	&	Prep
Projector	and	computer	(optional)
White	paper	and	markers
Rules	for	grudgeball	(see	website	for	details:
http://toengagethemall.blogspot.com/2013/02/grudgeball-review-game-where-kids-
attack.html)
Team	assignments	that	divide	your	class	into	5	or	6	teams
Nerf	hoop	&	ball	(or	wastepaper	and	trash	can)
Taped	2-	and	3-point	lines

Briefly	review	the	rules	of	Grudgeball	if	you	have	forgotten	them.	If	you	have	removed	your	2
and	3	point	lines	from	last	time	you	played,	test	out	your	2	and	3	point	lines	before	class
begins.	If	you	do	not	wish	to	play	Grudgeball	in	your	classroom	(or	if	you	are	unable	to),
most	Grudgeball	questions	can	be	found	in	the	self-check	question	bank	for	12.1.

Pacing	Guide

Lesson	8.02:	Writing	Recursive	Solutions

452

http://toengagethemall.blogspot.com/2013/02/grudgeball-review-game-where-kids-attack.html

Section Total	Time

Bell-work	and	attendance 5min

Introduction	and	note-taking 15min

Activity:	Grudgeball 35min

Procedure
To	hook	your	class	for	today’s	material,	and	if	space	and	whiteboard	setup	allow,	set	up	the
grudgeball	“court”	and	scoreboard	before	class	begins.	Remind	students	that	lecture	content
will	be	tested	during	the	game.

Bell-work	and	Attendance	[5	minutes]

Introduction	and	note-taking	[10	minutes]

1.	 Begin	by	asking	students	what	makes	a	method	recursive	(it	calls	itself).	Ask	students	to
offer	suggestions	as	to	how	to	write	a	recursive	method.	Using	pseudocode	(or	actual
code,	if	they	offer	it),	outline	their	suggestion	on	the	board.	It	should	look	something	like
this:

public	static	void	writeStars	(int	x)	{

				writeStars(x	-	1);				//	Prints	a	star.

}

2.	 Don’t	worry	if	students	don’t	include	a	base	case!	Congratulate	your	students	on
remembering	that	the	method	calls	itself,	then	ask	students	how	this	method	is
supposed	to	stop.	(It	won’t!	This	is	called	infinite	recursion.)	To	make	sure	that	you	write
recursive	methods	that	work,	you	need	to	remember	2	key	ingredients:

Base	case:	a	case	within	a	recursive	solution	that	is	so	simple,	it	can	be	solved
without	needing	to	call	the	method	again	(a	recursive	call).

Recursive	case:	A	case	within	a	recursive	solution	that	involves	reducing	the
overall	problem	to	a	simpler	problem	of	the	same	kind	that	can	be	solved	by	a
recursive	call.

3.	 Add	these	2	ingredients	to	the	example	you	currently	have	on	the	board.	It	should	look
something	like	this:

Lesson	8.02:	Writing	Recursive	Solutions

453

public	static	void	writeStars	(int	x)	{

				if	(x	==	0)	{

								//	This	is	the	base	case:	"write	0	stars"	needs	no	additional	method.

								System.out.println();

				}	else	{

								//	This	is	the	recursive	case:	write	one	star,	then	write	however	many

								//	stars	are	left.

								System.out.println("*");

								writeStars(x	–	1);

				}

}

4.	 Emphasize	to	students	that	you	can	write	more	than	one	recursive	case,	but	you	must
always	have	at	least	1	base	case	and	1	recursive	case,	or	the	code	won’t	work.
(Because	you	need	both	types	of	cases,	recursive	solutions	are	often	written	as	if/else
or	nested	statements.)

5.	 Ask	students	to	explain	what	doesn’t	work	about	this	code,	and	ask	them	to	correct	the
recursive	code	here:

public	static	void	writeStars	(int	x)	{

				System.out.print("*");

				writeStars(n-1);

}

There’s	a	recursive	case,	which	is	good,	but	there	is	no	base	case!	This	causes	infinite
recursion	since	it	has	no	way	of	stopping.	Instead	of	stopping	at	0	stars	(which	is	what
the	base	case	would	be),	the	code	will	try	to	write	-1,	-2,	-3…	stars	forever!

Activity:	Grudgeball	[35	minutes]

1.	 Divide	students	into	their	assigned	teams.

2.	 Review	the	rules	for	grudgeball,	and	have	the	students	repeat	the	rules	back	to	you.

3.	 Using	the	problems	listed	below	(and	any	you	may	add,	depending	on	your	class’
needs),	play	grudgeball	until	a	team	wins,	or	until	the	class	period	ends.

If	a	class	gets	the	answer	wrong,	BRIEFLY	pause	the	game	to	have	students	offer
corrections	before	moving	to	the	next	team’s	question.

If	correction	seems	to	be	dragging	on,	jump	in	and	quickly	re-teach	using	the
incorrect	answer	as	your	example.	It	is	important	to	keep	the	pace	going	to
maintain	student	interest	in	the	game!

Lesson	8.02:	Writing	Recursive	Solutions

454

Gudgeball	problems	&	answers	have	been	grouped	assuming	that	you	have	6	teams.	If
you	have	fewer	teams,	each	“round”	will	be	shifted	accordingly,	so	you	may	have
rounds	where	different	teams	are	practicing	different	concepts.	Judge	each	team’s
knowledge	gaps,	and	adjust	which	questions	you	ask	each	group	accordingly.

4.	 Questions	for	your	Grudgeball	game	are	listed	below:

GRUDGEBALL	PROBLEMS

Conceptual	Questions

a)	What	is	recursion?
b)	How	does	a	recursive	method	differ	from	an	iterative	method?
c)	What	do	you	look	for	in	a	recursive	method?	(What	parts	does	it	have?)
d)	What	is	a	base	case?
e)	What	is	a	recursive	case?
f)	Does	a	recursive	method	need	to	have	both	base	and	recursive	cases?
g)	Why	does	a	recursive	method	need	to	have	a	base	case	and	a	recursive	case?
h)	Can	a	recursive	method	have	more	than	one	base	case?
i)	Can	a	recursive	method	have	more	than	one	recursive	case?
j)	What	happens	if	a	recursive	solution	is	missing	a	base	case?

Predict-the-Output	Questions

Use	the	following	method	for	questions	k	–	s:

public	static	void	mystery1	(int	n)	{

				if	(n	<=	1)	{

								System.out.print(n);

				}	else	{

								mystery1(n	/	2);

								System.out.print(",	"	+	n);

				}

}

What	is	the	output	produced	by	the	method	call	indicated?

k)		mystery1(1);	
l)		mystery1(2);	
m)		mystery1(3);	
n)		mystery1(4);	

Lesson	8.02:	Writing	Recursive	Solutions

455

o)		mystery1(16);	
p)		mystery1(30);	
q)		mystery1(100);	
r)		mystery1(-1);	
s)		mystery1(2.2);	

Predict-the-Output	Questions	(continued)

Use	the	following	method	for	questions	t	–	x:

public	static	void	mystery2	(int	n)	{

				if	(n	>	100)	{

								System.out.print(n);

				}	else	{

								mystery2(2*n);

								System.out.print(",	"	+	n);

				}

}

What	output	is	produced	by	the	method	call	indicated?

t)		mystery2(113);	
u)		mystery2(70);	
v)		mystery2(42);	
w)		mystery2(30);	
x)		mystery2(10);	

Accommodation	and	Differentiation
In	ELL	classrooms,	read	the	questions	aloud	in	addition	to	showing	the	question	on	the
board	or	projector.	Consider	distributing	a	worksheet	with	the	questions	on	it	so	students	can
write	down	answers	during	the	game.

If	students	are	having	difficulty	with	the	“predict	the	output”	questions,	a	step-by-step
explanation	of	how	a	recursive	method	executes	can	be	found	here
(http://tinyurl.com/lablr3h).	You	can	pattern	your	explanations/re-teaching	to	students	using
the	same	method.

Misconceptions

Lesson	8.02:	Writing	Recursive	Solutions

456

http://tinyurl.com/lablr3h

When	the	recursive	call	is	made,	mistakenly	thinking	the	same	parameter	is	being	used
instead	of	a	distinct	copy	for	the	recursive	call.

The	only	time	the	base	case	is	called	is	if	the	initial	call	is	the	base	case.

Video
BJP	12-2,	Implementing	a	Recursive	Function
http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c12-2

Forum	discussion
Lesson	8.02	Writing	Recursive	Solutions	(TEALS	Discourse	account	required)

Lesson	8.02:	Writing	Recursive	Solutions

457

http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c12-2
http://forums.tealsk12.org/c/unit-8/8-02-writing-recursive-solutions

Lesson	8.03	—	Mechanics	of	Recursion

Overview

Objectives	—	Students	will	be	able	to…

Model	how	recursive	methods	execute.

Assessments	—	Students	will…

Write	a	recursive	method
Model	the	execution	of	that	method	for	the	instructor
Model	a	method	written	by	their	peers

Homework	—	Students	will…

Complete	self-check	#6,	10	and	exercise	#3

Materials	&	Prep
Projector	and	computer	for	hook	(https://youtu.be/3WBvS_n2oTY)
Whiteboard	and	markers
Classroom	copies	of	WS	8.3,	Teacher	Demo	8.3
One	pair	of	scissors	for	each	group
Small	group	assignments	(~4	students	per	group)
Classroom	copies	of	the	textbook	(optional)
Printout	for	Teacher	Demo	8.3	(optional)

Carefully	read	through	the	“Mechanics	of	Recursion”	example	in	section	12.2.	You	should
make	a	copy	of	WS	8.3	for	yourself	and	do	today’s	activity	before	delivering	the	lesson	so
you	can	smoothly	demonstrate	(and	check)	how	to	model	a	recursive	method.	If	you	decide
to	model	an	example	for	the	class	before	the	activity,	use	the	pre-printed	example	so
students	can’t	just	copy	their	sample	method	from	the	book.

Pacing	Guide	[Optional,	Lessons	Vary]

Lesson	8.03:	Mechanics	of	Recursion

458

https://youtu.be/3WBvS_n2oTY
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit8/WS%208.3.docx
https://raw.githubusercontent.com/TEALSK12/apcsa-public/master/curriculum/Unit8/Teacher%20Demo%208.3.docx

Section Total	Time

Bell-work	and	attendance 5min

Discussion	of	hook	&	introduction 15min

Activity	1:	Modeling	Recursive	Methods 20min

Activity	2:	Modeling	a	Peer’s	Methods 10min

Procedure
On	your	classroom	projector	or	screen,	have	the	animation	of	the	Dragon	Curve	playing	on	a
loop	(link	in	“Materials	and	Prep”).	Adjust	the	player	to	play	2x	speed	to	keep	student
interest;	you	may	want	to	mute	the	music.	As	bell-work,	ask	students	how	this	animation	is
an	example	of	recursion.	Their	explanation	should	describe	the	recursive	case	in
pseudocode.

Bell-work	and	Attendance	[5	minutes]

Discussion	of	Hook	&	Introduction	[15	minutes]

1.	 Begin	by	reviewing	the	hook/Bellwork	with	students.	There	may	be	some	debate	as	to
what	the	recursive	and	base	cases	are	for	this	curve;	allow	time	for	students	to	argue
and	come	to	consensus.	Students	should	understand	that	(A)	the	base	case	is	just	a
single	straight	line,	and	(B)	the	recursive	case	involves	repeated	the	line	with	a	90°	turn.

2.	 There’s	an	important	distinction	to	be	made	here:	the	animations	linked	to	from	this
lesson	show	recursion	from	the	“bottom	up.”	This	is	not	the	way	that	recursion	works.
The	modeling	activity	is	a	better	representation	of	the	recursive	process;	the	animations
are	meant	only	to	demonstrate	how	even	the	simplest	recursive	method	can	quickly
yield	large,	complex	results.

If	you	feel	it	might	be	helpful	to	show	your	students	a	recursive	implementation	of
drawing	the	dragon	curve,	you	can	find	one	here:
https://scratch.mit.edu/projects/65378560/.

If	your	class	is	fairly	advanced,	you	may	want	to	skip	Teacher	Demo	8.3.	Advanced
students	will	benefit	from	exploring	the	model	on	their	own	as	outlined	in	WS	8.3.
However,	for	many	classes	additional	scaffolding	will	be	needed.

3.	 To	perform	the	demo,	you	should:

Cut	out	the	cards	in	the	Teacher	Demo	8.3

Lesson	8.03:	Mechanics	of	Recursion

459

https://scratch.mit.edu/projects/65378560/

If	you	have	a	classroom	projector,	do	the	demonstration	under	the	capture	so	your
cards	are	magnified	to	the	point	where	students	in	the	back	of	the	classroom	can
see	what	you	are	doing.	If	you	do	not	have	a	magnifying	projector,	you	may	want	to
do	this	demo	as	you	walk	around	the	class,	showing	students	what	is	on	each	card.

Explain	to	students	that	you	are	modeling	Java’s	call	stack.	A	call	stack	is	the	way
that	Java	keeps	track	of	the	sequence	of	methods	that	have	been	called.	The
model	your	using	today	is	another	way	of	tracking	flow-of-control.

Tell	students	that	in	your	example	you’ll	be	modeling	a	method	that	reverses	a	list
of	words.	When	students	break	into	groups	for	the	activity,	they	will	be	writing	their
own	recursive	methods	and	modeling	Java’s	call	stack	for	the	methods	that	have
been	called.

Briefly	review	the	reverse	method	introduced	in	12.2.

4.	 Show	students	the	first	piece	of	paper	form	Teacher	Demo	8.3	with	the	method
definition.

i.	 This	should	look	pretty	familiar	to	students,	but	have	them	point	out	to	you	the
recursive	case	(input.nextLine())	to	review.

ii.	 Point	out	to	students	the	new	feature	on	your	model	that	holds	the	local	variable
line.	Ask	students	what	they	think	this	represents?	(It	is	a	place	in	the	computer’s
memory	that	stores	the	variable	line.)

iii.	 Ask	students	to	narrate	what	happens	when	we	call	the	reverse	method.

iv.	 Write	the		this		variable	on	the	slip	of	paper,	and	ask	students	what	happens	next.
The	method	will	get	called	again—but	because	recursion	works	differently	than
iterative	code,	we	don’t	just	run	through	the	method	again	like	with	a	loop.

v.	 Take	out	the	second	copy	of	the	reverse	method,	and	place	it	over	the	first	paper,
as	indicated	in	the	textbook.	Have	students	walk	you	through	the	method	again	and
tell	you	what	local	variable	will	get	written	in	the	storage	space	at	the	bottom	of	the
paper	(“is”).

vi.	 Repeat	these	steps	until	you	have	reached	the	base	case	(the	fifth	sheet	of	paper).
Ask	students	what	the	local	variable	is,	and	discuss	what	happens	when	there	is	no
word	left	to	reverse.	(The	input.hasNextLine()	returns	false,	so	that	method
terminates.)

vii.	 Now	remove	that	fifth	card	from	the	pile,	revealing	the	fourth	copy	of	the	method
again.	Let	students	know	that	Java	returns	to	where	it	was	before	it	executed	the
call	that	just	terminated.

Lesson	8.03:	Mechanics	of	Recursion

460

i.	 Ask	students	what	happens	next.	(We	print	the	line	“no?”	and	terminate.)	Write
this	output	on	the	board	so	students	can	keep	track	of	the	output.

ii.	 This	means	that	Java	now	goes	to	the	place	where	it	was	before	it	terminated
this	call.	Ask	students	what	you	should	do	now	in	your	modeling	of	this
recursive	method.	(Take	off	this	card,	and	reveal	the	third	method	card.)

viii.	 Continue	in	this	way	until	you	have	returned	to	the	first	card.

ix.	 If	you	need	to	repeat	sections	of	this	demo,	do	so	until	you	feel	that	50%	of	your
class	understands	the	process.	At	this	point,	students	should	be	able	to	help	each
other	learn	the	concepts	during	their	activity.

Activity	1:	Modeling	Recursive	Methods	[20	minutes]

1.	 Direct	students	to	read	through	all	the	directions	first	before	beginning	the	activity.	Point
out	to	them	that	they	will	be	completing	their	own	demo	(similar	to	the	one	you	just
completed)	using	their	own	code.

2.	 Break	students	into	small	groups	and	distribute	worksheets	and	scissors.

3.	 Keep	students	on	pace	by	announcing	10-	and	5-minute	warnings.

4.	 If	students	complain	about	having	to	rewrite	their	recursive	code	so	many	times,	point
out	that	it’s	a	good	thing	that	we	only	have	to	type	out	the	recursive	code	once!	In
reality,	the	method	doesn’t	exist	as	many	copies	(that	would	take	up	a	lot	of	memory!)
We’re	just	using	physical	examples	to	keep	track	of	how	Java	is	calling	each	“round”	of
the	recursive	method.

5.	 As	students	work,	check	first	for	correct	recursive	methods,	then	make	a	second	round
having	students	perform	their	modeling	activity	for	you.

6.	 Be	sure	each	group	explains:

Where	the	base	case	is,	and	when	the	base	case	occurs.

Where	the	recursive	case	is.

What	causes	the	method	to	advance	to	the	next	round	of	recursion.

What	causes	the	method	to	terminate.

Where	Java	returns	to	after	a	method	has	terminated.

What	the	output	is.

7.	 If	students	do	not	answer	all	of	these	questions	correctly,	give	them	time	to	regroup	and
assess	them	again	after	they	have	corrected	their	thinking.

Lesson	8.03:	Mechanics	of	Recursion

461

Activity	2:	Modeling	a	Peer’s	Methods	[10	minutes]

1.	 After	20	minutes	(or	when	students	finish),	have	groups	trade	code	sheets,	and
challenge	the	groups	to	work	their	way	through	the	code	again.

2.	 Keep	them	on	pace	by	announcing	time	(they	only	have	10	minutes	for	this	second
activity).	Visit	each	group	and	ask	for	groups	to	model	these	new	methods	for	you.

3.	 You	can	opt	to	select	some	student	groups	that	have	a	smooth	presentation	to	share
with	the	entire	class	before	class	dismisses.

Activity	3:	Iterative	to	Recursive	and	Vice-Versa	[Optional]

1.	 Introduce	iterative	and	recursive	methods	that	produce	the	same	result.	For	example,
here	is	an	iterative	and	recursive	example	for	solving	factorials:

//	Recursive																												|								//	Iteration

int	factorial(int	n)	{																		|								int	factorial(int	n)	{

				if	(n	==	1)	{																							|												int	product	=	1;

								return	1;																							|												for	(int	i	=	2;	i	<=	n;	i++)	

{

				}	else	{																												|																product	*=	i;

								return	n*factorial(n-1);								|												}

				}																																			|												return	product;

}																																							|								}

2.	 Invite	your	class	to	take	a	recursive	function	and	turn	it	into	an	iterative	function.	You
can	provide	a	new	recursive	function	or	they	can	use	one’s	they’ve	previously	worked
with.	To	help	your	class,	put	the	recursive	step	into	a	for	loop	that	worked	to	reach	the
base	case	[i	(=<>)	(#)].

3.	 Discuss	what	needed	to	change	between	the	recursive	and	iterative	calls.

4.	 Now,	ask	your	class	to	do	the	inverse;	take	an	iterative	function	and	turn	it	into	a
recursive	one.	Based	off	your	discussion	and	the	previous	change	between	recursion
and	iteration,	this	task	should	be	easier.

Activity	4:	Creating	Fractals	with	Recursion	[Optional]

1.	 Explain	to	your	students	that	the	dragon	curve	we	worked	with	earlier	is	called	a	fractal,
a	fractal	being	a	geometric	figure	in	which	each	part	has	the	same	statistical	character
as	the	whole.	They	follow	a	pattern	in	which	similar	patterns	recur	at	progressively
smaller	scales.

Lesson	8.03:	Mechanics	of	Recursion

462

2.	 Invite	your	class	to	create	the	dragon	curve	in	pseudocode,	they	should	notice	that	the
figure	(they	don’t	know	how	to	draw)	rotates	90°	around	its	near	point.

3.	 Now,	as	an	easier	activity,	we’re	going	to	play	with	the	Koch	curve,	which	the	code	can
be	found	here	on	stack:	http://stackoverflow.com/questions/13000994/koch-snowflake-
java-recursion.	Explain	all	parts	of	this	program,	specifically	the	level,	turning,	the
recursion	in	drawKochCurve,	and	the	gpdraw	package	being	used	(myPencil	and
myPaper).

The	Koch	curve	follows	three	rules:

i.	 Divide	the	line	segment	into	three	segments	of	equal	length.

ii.	 Draw	an	equilateral	triangle	that	has	the	middle	segment	from	step	1	as	its	base
and	points	outward.

iii.	 Remove	the	line	segment	that	is	the	base	of	the	triangle	from	step	2.

4.	 As	a	fun	lesson,	let	your	class	play	with	the	values,	altering	the	Koch	curve	to	create
new	designs.	Award	prizes	to	special	and	unique	fractals	students	create	or	require	that
a	fractal	(and	its	code)	be	turned	in	at	the	end	of	class.	If	your	class	is	comfortable	with
the	activity,	you	can	introduce	color	for	myPencil	which	opens	a	door	for	interesting
designs.

Accommodation	and	Differentiation
While	all	students	should	write	their	OWN	algorithm,	you	should	encourage	students	to	work
in	pairs	or	small	groups	so	they	can	share	ideas	and	help	each	other	organize	their
thoughts.	This	is	particularly	important	in	ELL	classrooms,	where	emergent	English	speakers
can	pair	with	advanced	English	learners.	If	some	students	want	to	do	this	project	all	on	their
own,	let	them.

If	you	have	students	who	are	speeding	through	this	lesson,	you	should	encourage	them	to:

Create	a	mnemonic	or	acrostic	to	remember	all	the	steps	for	checking	syntax	errors
Make	a	poster	for	the	classroom	illustrating	the	mnemonic	or	acrostic
Help	another	student	with	the	worksheet	(explain,	not	solve-for-them)

About	Error	Checking	in	Eclipse
If	your	students	are	enthusiastic	about	the	Dragon	Curve,	expand	on	the	discussion	by
pointing	out	that	there	are	2	repetitions	in	the	Dragon	curve,	one	left	and	one	right.	This
means	that	there	are	2	lists	in	the	recursive	code.

Lesson	8.03:	Mechanics	of	Recursion

463

http://stackoverflow.com/questions/13000994/koch-snowflake-java-recursion

Ask	students	to	speculate	on	what	the	curve	would	look	like	with	4	repetitions.	An	animation
of	a	3D	dragon	curve	can	be	found	here:	(https://youtu.be/BnUTikyR1CU)

For	less-advanced	classrooms,	you	may	want	to	pre-populate	the	group	worksheets	with
recursive	methods.	This	will	allow	students	to	focus	on	processing	the	execution	of	the
method	rather	than	struggling	with	syntax.	This	is	not	recommended	unless	you	are	very
pressed	for	time.	In	most	cases,	students	should	be	practicing	properly	writing	recursive
code.

Video
BJP	12-3,	Implementing	a	Recursive	Method
http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c12-3

Forum	discussion
Lesson	8.03	Mechanics	of	Recursion	(TEALS	Discourse	account	required)

Lesson	8.03:	Mechanics	of	Recursion

464

https://youtu.be/BnUTikyR1CU
http://media.pearsoncmg.com/aw/aw_reges_bjp_2/videoPlayer.php?id=c12-3
http://forums.tealsk12.org/c/unit-8/8-03-mechanics-of-recursion

Lesson	8.04	—	MergeSort

Overview

Objectives	—	Students	will	be	able	to…

Use	mergeSort	to	sort	an	ArrayList.
Use	recursion	to	traverse	and	Array.

Assessments	—	Students	will…

Build	a	merge	algorithm	to	be	applied	in	mergeSort.

Homework	—	Students	will…

Summarize	notes	for	notebook	check	tomorrow

Materials	&	Prep
Projector	and	Computer
Whiteboard	and	Markers
Electronic	survey	for	student	review	requests

The	homework	tonight	asks	students	to	submit	2	questions	for	review;	the	number	is
reduced	for	this	until	since	there	is	far	less	material	than	usual.	Create	an	electronic	survey
for	students	to	complete	with	3	text	fields,	one	for	name,	and	2	for	questions	they	have	about
Ch.	12	content.	Set	a	deadline	by	which	time	students	must	have	submitted	2	questions
from	Ch.	12	If	students	do	not	have	questions,	stipulate	that	they	still	have	to	submit
something	to	receive	credit,	even	if	it	is	only	questions	they	think	other	students	may	have.

Pacing	Guide

Lesson	8.04:	MergeSort

465

Section Total	Time

Bell-work	and	attendance 5min

Introduction	and	homework	distribution 5min

Student	work 35min

Students	trade	work,	check,	and	submit 10min

Procedure
Today	we	will	return	to	sorting	and	cover	MergeSort.	MergeSort	acts	recursively;	it	takes	a
list,	splits	it	down	into	single	elements,	and	compares	the	elements,	merging	them	together
in	an	orderly	fashion.	The	first	part	of	the	lesson	covers	merge	as	it’s	conceptually	easier,
the	second	part	of	the	lesson	covers	the	splitting	of	the	list.

Bell-work	and	Attendance	[5	minutes]

Introduction	to	MergeSort	[5	minutes]

1.	 Begin	your	lecture	by	bringing	the	class	back	to	selection	and	insertion	sort.	Make	the
case	that	selection	and	insertion	sort	both	work,	but	take	more	time	for	your	computer	to
process	(graph	in	slides).

2.	 Show	your	class	an	example	diagram	of	mergeSort;	they	should	realize	(with	your	help)
that	the	worst	case	performance	for	mergeSort	is	faster	than	either	selection	or	insertion
sort.

Merge	[15	minutes]

1.	 Invite	your	class	to	try	and	merge	two	sorted	lists	of	numbers.	How	would	we	compute	a
single	sorted	list	containing	all	the	numbers	in	list	1	and	list	2?	Have	your	class	set	up
the	pseudocode.

We	must	maintain	an	index	for	each	list	starting	at	0.

We	must	create	and	empty	list	to	hold	the	result.

When	we	haven’t	exhausted	our	two	lists,	insert	the	smallest	element	at	the	point	in
the	new	list	and	advance	the	index.

Lesson	8.04:	MergeSort

466

2.	 Let	your	class	work	for	10	minutes	to	try	and	create	the	merge	function.	Using	the
responses	they	come	up	with,	lead	them	to	the	correct	merge	function.	(Shown	on
slides,	using		ArrayList<Integer>)

MergeSort	[30	minutes]
1.	 Challenge	your	class	to	try	and	implement	merge	into	a	sorting	algorithm.	Those	who

have	done	the	reading	should	have	an	idea	about	where	to	get	started,	but	may	get
stuck	on	the	recursive	portion.

You	can	give	them	these	instructions	to	get	started:

i.	 If	the	list’s	size	is	0	or	1,	just	return	the	original	list	(as	it	is	already	sorted)

ii.	 Split	the	list	parameter	into	two	lists,	of	(roughly)	equal	size:	list	1	and	2.

iii.	 Sort	both	list	1	and	2.

iv.	 Merge	the	two	sorted	lists,	and	return	the	result.

2.	 For	lab	today,	your	class	will	be	tasked	with	making	this	mergeSort	algorithm.	At	the	end
of	class	post	the	solution	up	on	the	board.

Provide	hints	throughout	the	process,	namely:

i.	 When	the	list’s	size	is	0	or	1	and	you	return	the	original,	that	is	your	base	case.

ii.	 Split	your	lists	based	off	ArrayList.size().

iii.	 The	merge	function	does	merging.

3.	 If	the	class	is	struggling,	walk	through	the	entire	mergeSort	algorithm	with	them,
mergeSort	is	covered	by	the	AP	so	a	base	level	of	understanding	is	important.

Accommodation	and	Differentiation
In	ELL	classrooms,	pair	students	and	allow	them	to	work	together	to	correct	their	work.	If
you	noticed	a	particular	problem	was	difficult	for	the	majority	of	students,	read	the	question
aloud	and	help	students	work	through	it.

For	those	students	who	have	nothing	to	correct	(or	finish	very	early),	reward	them	with	silent
free	time,	or	allow	them	to	work	on	a	free-choice	programming	project.

Video

Lesson	8.04:	MergeSort

467

CSE	143,	Selection	Sort	(17:22–28:11)
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=1fdd364a-4d01-49cf-
96b3-ce2f67b77dcf&start=1042

Forum	discussion
Lesson	8.04	MergeSort	(TEALS	Discourse	account	required)

Lesson	8.04:	MergeSort

468

https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=1fdd364a-4d01-49cf-96b3-ce2f67b77dcf&start=1042
http://forums.tealsk12.org/c/unit-8/8-04-mergesort

Lesson	8.05	—	Finding	&	Fixing	Errors

Overview

Objectives	—	Students	will	be	able	to…

Find	errors	in	their	returned	homework	assignments.
Correct	their	code

Assessments	—	Students	will…

Re-submit	all	homework	assignments	with	corrected	answers.

Homework	—	Students	will…

Review	materials	for	the	quiz	by:
Reviewing	all	the	blue	pages	at	the	end	of	Chapter	12	for	sections	12.1	and	12.2
Outline	Chapter	12	up	to	section	12.3

Submit	2	questions	for	review	in	class	tomorrow	using	electronic	survey

Materials	&	Prep
Any	student	homework	assignments	that	you	have	not	yet	returned
Student	self-help	system	(such	as	C2B4	or	student	pairing)
Electronic	survey	for	student	review	requests

The	homework	tonight	asks	students	to	submit	2	questions	for	review;	the	number	is
reduced	for	this	until	since	there	is	far	less	material	than	usual.	Create	an	electronic	survey
for	students	to	complete	with	3	text	fields,	one	for	name,	and	2	for	questions	they	have	about
Ch.	12	content.	Set	a	deadline	by	which	time	students	must	have	submitted	2	questions
from	Ch.	12	If	students	do	not	have	questions,	stipulate	that	they	still	have	to	submit
something	to	receive	credit,	even	if	it	is	only	questions	they	think	other	students	may	have.

Pacing	Guide

Lesson	8.05:	Finding	&	Fixing	Errors

469

Section Total	Time

Bell-work	and	attendance 5min

Introduction	and	homework	distribution 5min

Student	work 35min

Students	trade	work,	check,	and	submit 10min

Procedure
Today	we	continue	reinforcing	concepts	and	applying	the	tools,	procedures,	and	code	that
were	introduced	earlier.	Students	will	have	the	opportunity	to	correct	any	incorrect	homework
or	classwork	assignments.	It	may	be	the	case	that	students	need	to	practice	the	modeling
exercise	from	the	previous	lesson.	You	should	set	up	a	section	of	the	room	for	students	to
help	each	other	model	code	execution	quietly.

Bell-work	and	Attendance	[5	minutes]

Introduction	and	Homework	Distribution	[5	minutes]

1.	 Return	student	homework	packets,	or	have	students	place	their	returned	homeworks	in
a	pile	on	their	desk.

2.	 Collect	the	homework	assignments	from	last	night,	and	quickly	grade	them	while
students	are	working	on	their	other	assignments.	Return	those	works	back	immediately
so	students	can	correct	any	errors.

Some	of	the	assignments	from	the	night	before	may	take	a	while	to	grade	(especially
exercise	12.3).	You	may	want	to	have	students	help	you	with	the	grading,	or	extend	the
classwork	to	homework.	If	you	cannot	grade	12.3	before	the	end	of	class,	you	might
want	to	integrate	this	exercise	into	your	test	review	session.

3.	 Explain	to	students	that	they	have	the	opportunity	to	get	full	credit	on	their	homework
grades	by	correcting	them	now,	in	class.	Ask	students	for	suggestions/ideas	on	how	to
make	sure	they	don’t	miss	any	errors.

By	now	students	should	be	used	to	relying	on	their	error	checklist/algorithm.

Student	Work	[35	minutes]

Have	students	work	individually	to	correct	their	homework	grades.

Lesson	8.05:	Finding	&	Fixing	Errors

470

Offer	time	checks	for	students	so	they	stay	on	task.

If	students	have	not	finished	homework	assignments,	allow	them	time	today	to	complete
these	assignments	to	turn	in	for	partial	credit.

Students	trade	work,	check,	and	turn	in	[10	minutes]

At	the	end	of	class,	have	students	trade	their	homework	assignments	to	evaluate	each
other’s	corrections	before	submission.

Accommodation	and	Differentiation
In	ELL	classrooms,	pair	students	and	allow	them	to	work	together	to	correct	their	work.	If
you	noticed	a	particular	problem	was	difficult	for	the	majority	of	students,	read	the	question
aloud	and	help	students	work	through	it.

For	those	students	who	have	nothing	to	correct	(or	finish	very	early),	reward	them	with	silent
free	time,	or	allow	them	to	work	on	a	free-choice	programming	project.

Forum	discussion
Lesson	8.05	Finding	&	Fixing	Errors	(TEALS	Discourse	account	required)

Lesson	8.05:	Finding	&	Fixing	Errors

471

http://forums.tealsk12.org/c/unit-8/8-05-finding-fixing-errors

Lesson	8.06	—	Review

Overview

Objectives	—	Students	will	be	able	to…

Identify	weaknesses	in	their	Unit	8	knowledge.

Assessments	—	Students	will…

Complete	Quiz	8.5.

Homework	—	Students	will…

Read	and	highlight	Study	for	Quiz

Materials	&	Prep
Projector	and	computer
Whiteboard	and	marker
Results	from	electronic	survey	of	review	topics

Once	students	have	submitted	their	review	requests,	assemble	those	topics	into	categories
and	prepare	to	re-teach	the	topics	as	needed.	Rather	than	using	an	entire	class	period	for	a
test,	we’re	condensed	the	Chapter	12	topics	into	a	quiz.	This	should	allow	you	more	time	to
start	reviewing	for	the	AP	exam.

Pacing	Guide

Section Total	Time

Bell-work	and	attendance 5min

Review	of	student	questions 40min

Procedure

Lesson	8.06:	Review

472

At	the	beginning	of	class	today:

Remind	students	that	the	quiz	is	at	the	end	of	class	today.

Review	student-submitted	questions.

Bell-work	and	Attendance	[5	minutes]

Review	of	Student	Questions	[30	minutes]

1.	 Work	through	the	various	review	topics,	prioritizing	questions	that	popped	up	the	most.

Some	questions	you	may	address	while	working	through	the	sample	test.

Be	ready	for	additional	questions	to	pop	up	as	you	go.	Save	yourself	the	work	and
use	old	homework	questions	and	student-generated	test	questions	as	examples	to
work	through.

2.	 Use	a	combination	of	group-solving	questions	on	the	whiteboard,	think-pair-share,	and
timed-response	as	review	strategies.

3.	 After	you’ve	completed	reviewing	an	idea,	remind	the	class	that	they	should	write	down
that	topic	if	they	feel	they	still	have	to	review	it	tonight.

Check	Student	Study	Lists	[5	minutes]

Spend	the	last	5	minutes	of	class	checking	each	student’s	review	topic	list.

Accommodation	&	Differentiation
The	quiz	features	a	recursive	method	to	produce	the	Fibonacci	sequence.	If	your	students
need	extra	help/scaffolding,	you	might	want	to	show	students	this	YouTube	video
(https://youtu.be/dsmBRUCzS7k)	and	lead	a	class	discussion	to	ensure	students	are	familiar
with	the	math	involved.

Forum	discussion
Lesson	8.06	Review	&	Quiz	(TEALS	Discourse	account	required)

Lesson	8.06:	Review

473

https://youtu.be/dsmBRUCzS7k
http://forums.tealsk12.org/c/unit-8/8-06-review-quiz

Lesson	8.08	—	Quiz	Review	&	Reteach

Overview

Objectives	—	Students	will	be	able	to…

Re-learn	or	strengthen	content	knowledge	and	skills	from	Unit	8.

Assessments	—	Students	will…

Re-submit	test	answers	with	updated	corrections	for	partial	or	full	credit
Credit	depends	on	instructor	preference

Homework	—	Students	will…

Complete	the	assessment	in	Chapter	7	of	Barron’s	Review	Book
Correct	any	incorrect	quiz	answers	by	re-answering	on	a	separate	sheet	of	paper

To	get	back	credit,	they	must	justify	their	new	answers
Staple	new	answer	sheet	to	old	test	and	turn	in	tomorrow

Materials	&	Prep
Projector	and	computer
Whiteboard	and	markers
Corrected	student	tests
Student	grades	(posted	online,	emailed	to	students,	or	handed	back	on	paper	in	class)
Digital	copy	of	test	questions	for	projector

Pacing	Guide

Section Total	Time

Bell-work	and	attendance 5min

Quiz	review	and	reteach 30min

Return	quizzes/start	homework	assignment 15min

Lesson	8.08:	Quiz	Review	&	Reteach

474

Procedure
Return	student	grades	before	class	begins	or	while	students	are	completing	the	bellwork.

Do	not	return	students’	quizzes	before	the	review	session,	since	you	want	to	motivate
students	to	pay	attention	to	the	entire	review,	taking	supplemental	notes	the	entire	time.

Bell-work	and	Attendance	[5	minutes]

Quiz	Review	&	Reteach	[30	minutes]

1.	 If	grades	are	low,	invite	the	class	to	a	discussion	of	what	can	be	improved.	With	your	co-
teachers	and/or	TAs	you	should	decide	how	to	shift	focus	as	the	AP	test	is	right	around
the	corner.	With	your	students,	you	should	follow	the	same	post-mortem	format	as	in
other	review	units,	but	with	the	AP	exam	in	mind.

Do	your	students	want	to	focus	on	Section	II	test	taking	strategies?

Perhaps	they	feel	they	need	to	drill	quick-response	Section	I	questions?

As	a	sanity-check,	students	should	be	reminded	that	they	only	have	1.5	minutes	to
solve	each	Section	I	question	on	the	AP.	If	they	are	note	near	this	pace,	or	if	this	is
an	unrealistic	goal	(due	to	language	and/or	reading	barriers),	decide	as	a	class	to
focus	on	test-taking	strategies	(skipping,	guessing,	process	of	elimination)	to
reduce	anxiety	and	recoup	some	potentially	lost	points.

Students	can	get	very	discouraged	during	this	time	of	year.	Inspire	and	amuse	your
class	by	pointing	out	old	word	walls	or	assignments	(if	you	still	have	them	up),	showing
students	how	far	they	have	come	since	the	beginning	of	the	school	year.

2.	 Walk	the	students	through	each	question	on	the	test,	glossing	over	questions	that
everyone	answered	correctly.

You	can	ask	for	students	to	volunteer	answers,	or	call	on	students	randomly.	Make
sure	that	students	explain	their	logic	when	they	answer.	If	a	student	gives	an
incorrect	answer,	the	explanation	will	tell	you	what	you	need	to	re-teach	or	clarify.

Do	not	skip	questions	that	everyone	answered	correctly,	but	do	not	spend	more
than	the	time	it	takes	to	read	the	question,	and	congratulate	students’	correct
answers.

3.	 Project	a	copy	of	each	question	as	you	review—this	will	help	students	recall	the
question/process	the	information.

Lesson	8.08:	Quiz	Review	&	Reteach

475

4.	 Make	sure	that	students	are	taking	notes	during	the	re-teach,	reminding	students	that
for	homework,	they	will	have	an	opportunity	to	win	back	some	of	the	points	on	their
exam.

5.	 For	Section	II-type	questions,	select	a	sample	of	student	work	(with	any	identifying
information	obscured),	and	work	through	the	answer	together	as	a	class.

Return	Quizzes/Start	Homework	Assignment	[15	minutes]

At	the	end	of	class,	if	time	allows,	return	the	quizzes	and	allow	students	some	time	to	begin
their	homework	assignment.

Accommodation	and	Differentiation
Encourage	advanced	students	to	take	on	additional	programming	challenges.	One	easy	way
to	do	this	is	to	assign	Programming	Projects	from	the	blue	pages	at	the	end	of	each	Chapter.
Section	12.5	has	an	excellent	recursive	graphics	lab	that	would	be	a	wonderful	assignment
for	advanced	students.

If	you	have	a	few	students	that	are	struggling	with	the	class,	choose	these	students	to	create
your	classroom	posters	after	school	or	for	extra	credit.

Forum	discussion
Lesson	8.08	Quiz	Review	&	Reteach	(TEALS	Discourse	account	required)

Lesson	8.08:	Quiz	Review	&	Reteach

476

http://forums.tealsk12.org/c/unit-8/8-08-quiz-review-reteach

Lesson	9.00	—	Reviewing	for	the	AP	Exam

Topic	Review	&	Re-teaching
To	get	a	sense	for	which	topics	your	class	needs	to	review,	we	recommend	administering	a
Barron’s	practice	exam	as	a	pre-test,	another	as	a	post-test	after	some	review,	then	the
2009	released	AP	CS	A	exam	(the	most	recent	fully-released	exam)	as	a	final	practice.

The	2009	exam	includes	GridWorld	questions	(Free	response	question	2,	multiple	choice
questions	21–25).	Instructors	could	have	students	skip	these	now	obsolete	questions,	or
replace	them	with	questions	of	similar	difficulty	from	the	2004	exam	to	allow	an	AP	score	to
be	reasonably	computed.

As	you	re-teach	concepts,	practice	questions	and	assessments	can	be	gleaned	from	the
Bellevue	International	Mastery	Tests	(included	as	a	file	within	the	Unit	9	materials).	These
tests,	written	and	graciously	shared	by	Arthur	Watson,	provide	an	easy	way	to	retest	your
students.	Should	you	decide	to	use	these	resources,	keep	the	following	in	mind:

1.	 The	tests	do	not	include	recursion,	searching,	or	sorting	since	these	were	the	most
recently	covered	units	before	whole-year	review.

2.	 There	are	3	versions	of	each	test	(A,	B,	and	C).	Versions	are	similar,	so	students	can	re-
take	each	exam	after	working	on	material	to	earn	a	higher	score.

3.	 As	it	gets	closer	to	AP	test	time,	Arthur	lets	his	class	use	the	A	version	test/answer	keys
to	study	for	the	B	and	C	versions.

Practice	Questions
Whether	in-class	or	for	homework,	giving	students	ample	opportunities	to	drill	test	questions
will	help	them	overcome	test	anxiety.	The	resources	listed	below	provide	practice	material
using	different	learning	modalities:

Lesson	9.00:	Reviewing	for	the	AP	Exam

477

Website	URL Features

http://APcomputersciencetutoring.com
Practice	problems	&	solutions	broken	down	by
topic.	Old	AP	multiple-choice	questions	&
answers.

http://tinyurl.com/obwpm39 175	multiple-choice	questions	(self-checking)

http://tinyurl.com/nkauhfb Timed	practice	tests,	flashcards,	featured
“question	of	the	day.”

Test	Taking	Strategies
If	you	have	been	using	the	exams	provided	with	this	curriculum,	students	should	be	familiar
with	the	directions	and	guiding	text	of	the	AP	exam.	During	review,	you	should	push	the	test-
taking	strategies	covered	in	the	websites	referenced	below:

Website	URL Features

http://tinyurl.com/APCSTips Official	tips	from	the	College	Board.

http://tinyurl.com/APCSlist Test-taking	tips	and	Section	II	tips	from	a
teacher.

http://tinyurl.com/APCSquickReference See	page	A1	for	quick	reference	guide
included	with	the	exam.

Accommodation	&	Differentiation
There	are	3	available	practice	exams	you	can	give	to	your	students.	For	ELL	classrooms,
start	by	giving	the	first	practice	exam	with	a	little	extra	time	(~	10	minutes)	on	each	section,
so	they	have	time	to	get	used	to	pacing	and	reading.

After	you	have	re-taught	topics,	assigned	practice	timed	practice	at	home,	give	the	next
exam	at	full	time,	and	ask	the	students	to	report	back	to	you	what	they	felt	were	the	most
challenging	aspects	of	the	exam.

If	students	report	that	reading	is	slowing	them	down,	take	a	class	period	or	two	to	drill	the
word	wall	vocabulary.	Have	students	practice	reading	and	explaining	questions	to	each
other.	At	this	point,	repetition	is	key.	Strengthening	topic-specific	vocabulary	and	recall	will
be	more	beneficial	than	reviewing	additional	topics.

Some	fun	vocabulary	review	strategies	include:

Pictionary:	encourage	students	to	write	some	code	(or	find,	or	circle	it	in	a	sample	of
code	on	the	board	or	projector)	to	illustrate	a	concept	or	term.

Lesson	9.00:	Reviewing	for	the	AP	Exam

478

http://APcomputersciencetutoring.com
http://tinyurl.com/obwpm39
http://tinyurl.com/nkauhfb
http://tinyurl.com/APCSTips
http://tinyurl.com/APCSlist
http://tinyurl.com/APCSquickReference

Vocabulary	bingo:	Print	out	word	wall	words	(or	challenging	concepts)	on	bingo	cards
(you	can	make	them	online	here:	http://osric.com/bingo-card-generator/).	Rather	than
just	calling	out	words,	call	the	definition	of	the	term	or	project	an	example	of	the	concept
in	sample	code,	having	students	come	up	with	the	word	they	need	to	find	on	the	bingo
sheet.

If	your	students	are	speeding	through	the	review	sessions,	add	additional	challenges	by
sticking	to	Section	II	questions.	Students	can	access	Section	II	questions	from	2009	–	2014
on	the	AP	CS	website	here:	http://tinyurl.com/m7ljyec.	The	most	recent	released	Section	II
test	questions	and	scoring	rubric	are	included	with	Unit	9	materials.	2014’s	questions	and
scoring	rubric	are	available	on	the	AP	web	site.

Forum	discussion
Lesson	9.0	Reviewing	for	the	AP	Exam	(TEALS	Discourse	account	required)

Lesson	9.00:	Reviewing	for	the	AP	Exam

479

http://osric.com/bingo-card-generator/
http://tinyurl.com/m7ljyec
http://apcentral.collegeboard.com/apc/public/exam/exam_information/2000.html
http://forums.tealsk12.org/c/unit-9/9-00-reviewing-for-the-ap-exam

AP	Computer	Science	A	Curriculum
Development
This	project	contains	the	source	for	the	TEALS	AP	Computer	Science	A	Curriculum.	Content
can	be	browsed	in	the	following	ways:

On	GitBook	—	The	official	source	for	the	book
On	GitHub	—	From	the	repository	contents	on	GitHub
Locally	–	From	a	local	clone	of	the	development	repository

Style	Guidelines
Please	read	the	Style	Guidelines	before	modifying	the	contents	of	this	repo.	They're	short
and	ensure	consistency	across	the	docset.

Authors
Christine	Keefe	(Curriculum	Developer)
Nathaniel	Granor	(TEALS	Coordinator)

License
This	work	is	licensed	under	a	Creative	Commons	Attribution-NonCommercial-ShareAlike	4.0
International	license.	See	LICENSE.md	for	the	full	license.

Acknowledgements

TEALS	Summer	Fellows

Ben	Watsky
Julian	Boss

Markdown	Conversion	&	Repo	Setup

Steve	Hollasch

About	This	Curriculum

480

https://tealsk12.gitbooks.io/ap-computer-science-a/content/
https://github.com/TEALSK12/apcsa-public/blob/master/SUMMARY.md
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://github.com/hollasch

Kenney	Chan

Special	Thanks

Glenn	Durfee
Peter	Durham

AP	CS	Curriculum	Squad	Volunteers

Kevin	Wilson
Leo	Franchi
Miki	Friedman
Jim	Steinberger
Robyn	Moscowitz
Eric	Halsey
Kevin	Trotter
Andrew	Smith
Paul	Roales
David	Broman
Yael	Elmatad
Glenn	Durfee
Peter	Durham
Nelson	Collin
Ralph	Case
Charley	Williams
Jeffrey	Booth

AP	CS	Curriculum	Squad	Teachers

Nate	Binz
Janet	Roberts
Brett	Wortzman
Ingrid	Roche

About	This	Curriculum

481

TEALS	AP	CS	A	Curriculum	—	How	to
Contribute

Repository	Location
The	curriculum's	source	code	is	hosted	on	Github	at	https://github.com/TEALSK12/apcsa-
public.	Restricted	instructor-only	content	is	hosted	at	https://github.com/TEALSK12/apcsa-
instructor.

Did	you	catch	an	error	in	the	TEALS	AP	CS	A	curriculum,	or	perhaps	have	an	idea	for	an
addition	that	would	make	it	better?	If	so,	we'd	love	to	see	what	you've	got!

Methods	of	Contributing
We	can	accept	changes	and	suggestions	to	this	repo	in	a	bunch	of	different	ways,	so	here
they	are	from	least	involved	to	most.

Casual	Communication

You	can	make	comments	either	in	our	Slack	channel	(#apcsa-curriculum	in
https://tealsk12.slack.com)	or	to	us	personally	via	email	to	Kenney	Chan	or	Steve	Hollasch.
If	you	have	a	GitHub	account,	though,	it's	better	to	submit	an	issue,	as	there's	a	higher
guarantee	that	it	won't	get	lost.

Submit	an	Issue

The	best	way	to	make	sure	your	feedback	is	recognized,	tracked,	and	handled	is	to	submit
an	issue	on	GitHub.	You'll	need	a	GitHub	account	to	do	this.

Submit	a	Pull	Request	(PR)

This	is	the	most	involved	route,	but	more	powerful.	It	works	for	all	kinds	of	issues,	from	fixing
typos	to	making	radical	changes	in	curriculum.	Of	course,	if	you	decide	on	something
massive,	make	sure	to	vet	the	idea	with	us	first.

Contributing

482

https://github.com/TEALSK12/apcsa-public
https://github.com/TEALSK12/apcsa-instructor
https://tealsk12.slack.com
mailto:kencha@microsoft.com
mailto:steve@hollasch.net
https://github.com/TEALSK12/apcsa-public/issues
https://github.com/join

If	you're	doing	something	small	or	obvious,	and	you're	comfortable,	feel	free	to	just	go
straight	to	a	pull	request.	For	anything	else,	you	might	want	to	first	submit	an	issue.	In	the
issue,	mention	that	you're	willing	to	do	the	work	yourself.	If	the	idea	is	sound,	we'll	give	you
the	green	light	before	you	commit	any	effort	or	time.

How	to	Submit	a	Pull	Request	(Advanced)
The	following	steps	outline	the	easiest	way	to	submit	a	PR:

1.	 Create	a	local	working	clone	of	the		apcsa		repository.	If	you	haven't	done	this	before,
just	go	to	the	main	code	page	and	hit	the	"Clone	or	download"	button.	Explaining	how	to
use	Git	is	outside	the	scope	of	this	page,	so	you'll	need	to	know	how	to	do	this	already.

2.	 Create	and	checkout	a	feature	branch	for	your	work.	(The		master		branch	is	protected,
and	you	won't	be	able	to	submit	changes	there.)

3.	 Make	your	changes	in	the	feature	branch.	Make	sure	you	follow	the	style	guidelines	as
you	do	so.

4.	 Push	your	branch	up	to	the	GitHub	repo.	For	example,	if	you	work	on	the	command	line,
and	your	feature	branch	is	named	"moar-glitter",	then	you'd	do	this:

git	push	origin	--set-upstream	moar-glitter

This	just	needs	to	happen	once	to	establish	the	connection	between	your	local	branch
and	a	branch	of	the	same	name	up	on	GitHub.	After	that,	if	you	have	more	changes	to
add,	you	can	just		git	push		while	working	in	your	feature	branch.

5.	 When	you're	done	and	ready	for	review	(and	all	of	your	commits	have	been	pushed),
head	to	the	main	code	page.	There	you	should	see	your	branch	in	a	highlighted	box
with	a	"Compare	&	pull	request"	button	on	the	right.	If	not,	you	can	just	hit	the	"New	pull
request"	button.	If	you	did	the	latter,	there	will	be	two	buttons	to	control	which	branch	is
going	to	merge	into	which.	In	this	case,	the	base	branch	should	be		master	,	and	the
compare	branch	should	be		moar-glitter	.	Once	that's	set,	be	sure	to	enter	a
descriptive	comment	about	the	pull	request.	If	there's	an	associated	issue,	include	the
issue	number,	prefixed	with	a		#		character.	For	example,	if	this	is	a	fix	for	issue	137,
include		#137		in	the	comments.

6.	 Finally,	hit	the	"Create	pull	request"	button.	This	will	automatically	notify	the	reviewers.
Several	things	could	happen:

A	reviewer	approves	your	PR	and	merges	it	into		master	.	Gitbook	will	see	the
changes	and	automatically	build	an	update	with	your	changes	within	a	few	minutes.

Contributing

483

https://github.com/TEALSK12/apcsa-public/issues
https://github.com/TEALSK12/apcsa-public
https://github.com/TEALSK12/apcsa-public

A	reviewer	rejects	your	PR.	This	shouldn't	happen	if	you	got	approval	in	a
submitted	issue.	If	not,	you	should	get	a	clear	explanation	why	the	change	was	not
accepted.

A	reviewer	may	point	out	problems	with	your	PR,	and	request	changes	before
approving.	You'll	need	to	monitor	your	PR	to	catch	this.	One	aid	is	that	GitHub
tracks	nofications	in	the	upper	right	corner	of	the	web	pages	(the	bell	icon),	and
should	alert	you	to	change	requests.

7.	 After	the	dust	has	settled,	please	delete	your	feature	branch	from	the	GitHub	repo.	You
may	of	course	choose	to	keep	it	in	any	local	clones,	but	this	will	keep	the	primary	repo
clean	of	branch	clutter.	The	one	exception	to	this	is	if	your	feature	is	long-running,	and
you	plan	to	issue	a	string	of	PRs	as	work	progresses.

Hopefully,	all	went	well,	and	you've	helped	to	make	our	curriculum	even	better	--	thank	you!

Contributing

484

	Introduction
	Video Tutorials
	Curriculum Map
	Curriculum Assets
	Lesson 1.01: Using Eclipse & Practice It
	Lesson 1.02: Algorithms & Computational Thinking
	Lesson 1.03: String & Console Output
	Lesson 1.04: Common Errors & Comments
	Lesson 1.05: Static Methods & Method Calls (1/2)
	Lesson 1.06: Static Methods & Method Calls (2/2)
	Lesson 1.07: Programming Project
	Lesson 1.08: Finding & Fixing Errors
	Lesson 1.09: Review
	Lesson 2.00: Test Review & Reteach
	Lesson 2.01: Basic Data Concepts
	Lesson 2.02: Declaring & Assigning Variables
	Lesson 2.03: String Concatenation & Increment Decrement Operators
	Lesson 2.04: Mixing Types & Casting
	Lesson 2.05: for Loops
	Lesson 2.06: nested for Loops
	Lesson 2.07: Scope & Pseudocode
	Lesson 2.08: Programming Project
	Lesson 2.09: Programming Project
	Lesson 2.10: Finding & Fixing Errors
	Lesson 2.11: Review
	Lesson 3.00: Test Review & Reteach
	Lesson 3.01: Parameters
	Lesson 3.02: Limitations of Parameters & Multiple Parameters
	Lesson 3.03: Return Values
	Lesson 3.04: Programming Project
	Lesson 3.05: Using Objects & String Processing
	Lesson 3.06: Interactive Programs & Scanner Objects
	Lesson 3.07: Pokémon Battle Programming Project
	Lesson 3.08: Finding & Fixing Errors
	Lesson 3.09: Relational Operators & if/else
	Lesson 3.10: Nested if/else Statements
	Lesson 3.11: Reducing Redundancy
	Lesson 3.12: Cumulative Algorithms
	Lesson 3.13: while Loops
	Lesson 3.14: Random Numbers
	Lesson 3.15: Fencepost & Sentinel Loops
	Lesson 3.16: Boolean Logic (2 Days)
	Lesson 3.17: Finding & Fixing Errors
	Lesson 3.18: Review
	Test 2 Guide

	Lesson 4.00: Test Review & Reteach
	Lesson 4.01: Array Basics
	Lesson 4.02: For-Each Loop & Arrays Class
	Lesson 4.03: Printing, Searching, & Testing for Equality (2 Days)
	Lesson 4.04: Reference Semantics
	Lesson 4.05: Shifting Values & Arrays of Objects
	Lesson 4.06: Nested Loop Algorithms & Rectangular Arrays
	Lesson 4.07: ArrayList
	Lesson 4.08: Finding & Fixing Errors
	Lesson 4.09: Magpie Lab (5 Days)
	Lesson 4.10: Review
	Lesson 5.00: Test Review & Reteach
	Lesson 5.01: Object Oriented Programming
	Lesson 5.02: Object State & Behavior
	Lesson 5.03: Object Initialization: Constructors
	Lesson 5.04: Encapsulation
	Lesson 5.05: Finding & Fixing Errors
	Lesson 5.06: Picture Lab (9 Days)
	Lesson 5.07: Review
	Lesson 6.00: Test Review & Reteach
	Lesson 6.01: Inheritance Basics (2 Days)
	Lesson 6.02: Overriding Methods & Accessing Inherited Code
	Lesson 6.03: Interacting with the Object Superclass
	Lesson 6.04: Polymorphism
	Lesson 6.05: Has-a Relationships
	Lesson 6.06: Interfaces
	Lesson 6.07: Programming Project (5 Days)
	Lesson 6.08: Finding & Fixing Errors
	Lesson 6.09: Review
	Test 5 Guide

	Lesson 7.00: Test Review & Reteach
	Lesson 7.01: Searching Algorithms
	Lesson 7.02: Sorting Algorithms
	Lesson 7.03: Elevens Lab (16 Days)
	Lesson 7.04: Review
	Test 6 Guide

	Lesson 8.00: Test Review & Reteach
	Lesson 8.01: Thinking Recursively
	Lesson 8.02: Writing Recursive Solutions
	Lesson 8.03: Mechanics of Recursion
	Lesson 8.04: MergeSort
	Lesson 8.05: Finding & Fixing Errors
	Lesson 8.06: Review
	Lesson 8.08: Quiz Review & Reteach
	Lesson 9.00: Reviewing for the AP Exam
	About This Curriculum
	Contributing

